Nearly Optimal Bounds for Sample-Based
Testing and Learning of k-Monotone Functions

RANDOM 2024

Hadley Black
UC San Diego




PFO perty TeStl ng [Rubinfeld-Sudan 96, Goldreich-Goldwasser-Ron 98]

e Universe of functions F': X = R

e Property P C F

d(f,8) = Pr [f(x) # g¥)]

: xeX
e Distance: .
d(f, P) = mind(f, g)
geP
Property Tester

Given oracle access to f € F and € > 0:

1.if f € P: accept with prob. > 2/3
2. if d(f, P) > €: reject with prob. > 2/3




PAC Learning paiantsq

e Universe of functions F': X = R

e Property P C F

d(f,8) = Pr [f(x) # g¥)]

xeX

d(f, P) = mind(f, g)

geP

e Distance:

PAC Learner

Given oracle accesstof € P and € > 0:

e QOutput h € Fsuchthat P, [d(f,h) <¢e] >2/3




When is testing easier than learning”

g sample learning => ~ ¢ sample testing
algorithm for P algorithm for P
|GGR98]

Definition
A sample-based algorithm is one that is only allowed
to see the value of f at uniform random points

See (x, f(x)) where x ~ unif(X)

The standard access model for learning

Question
When does testing require fewer samples than learning?

IGGRO8], [KR0O], [BBBY12], [GR16], [BFH21]



Monotone Functions

f: {0,1}¢ - {0,1} monotone if f(x) < f(y) whenever x < y

Partial order: x < y iffx; <y, Vi € [d]

Learning with samples: ex a(dl/z/e) samples [Bshouty-Tamon 96]
P

Testing with queries: a(d 112/ £2) queries [Khot-Minzer-Safra 15]

Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02,
Chakrabarty-Seshadhri 14, Chen-Servedio-Tan 15, Khot-Minzer-Safra 15, Chen-Waingarten-Xie 17

What about testing with samples?

_ We prove: What about

[BT 96] + [GGRI8]: exp( O (d'*/¢)) (Q(d"/e)) for al £ >§ ;—3%]?
9, €)) for a

P In particular,

Q/exp(d)/e) when e < d—3/?
(Vexp ([(%GL)RS 00] d~'? < e < c[B24] e = Q(1)?



(k)-Monotone Functions

f: {0,114 — {0,1} is k-monotone if there does not exist Xo < X; < ... < x; such that

fla) =0 Jx3) =0
- ‘/.\/‘\ . oo \.
fow) =1 Jx) =1
Learning with samples: exp ( 5(](&7 12y 8)) [Blais-Cannone-Oliveira-Servedio-Tan 15]

[Grigorescu-Kumar-Wimmer 19],
[Canonne-Grigorescu-Guo-Kumar-Wimmer 19]

Testing with queries (1-sided error, k > 2): exp(© (d'7?))

What about testing with samples?

f:{0,1}¢ - [r]
(Q(rkdl/zle)) foralld="? < e < ¢, [B 24]

We prove: exXp
(/y exp(a(rkdl/z/e)) for learning [B 24]



What can you hope to do with samples”?

Query-based algorithms look for violations:

x < y where f(x) > f(y)

... If X, y are samples, then

d
Prix <yl = | | Prlx; < 1 = (3/4)
=1

— For s samples, need s> > (4/3)% to see even one

comparable pair of points. l.e. s = exp(£2(d))

—> exp(£2(d)) lower bound for 1-sided error sample-based testing

Our goal: 2-sided error lower bound



L ower bound for Boolean function
monotonicity testing with samples

Theorem [B 24]
Testing monotonicity of f: {0,114 — {0,1} requires exp(Q(dl/z)) samples

We prove this for € < c¢ for a sufficiently small constant ¢ € (0,1)



High level view: &, and &, ,

Theorem [B 24]

Testing monotonicity of f: {0,1}¢ — {0,1} requires
exp(Q(dl/z)) samples

Need to construct: ~_/4
e .5 supported over monotone f
* 9, outputting fthat is €2(1)-far with prob. Q(1) ——

Such that...

e A uniform random set S of exp(o(d'’?)) points
cannot tell if f came from &, or &,

0



First, some simplifications

1) Focus on upper middle layers of the hypercube

Functions we define will satisfy

e f(x) = 1 whenever x| > d/2 + \/Zl

* f(x) = 0 whenever |x| < d/2

2) Imagine middle layers are the same size

= [dl/z] — ( ~ d—1/2 . 2d

d/2 + f)

10



Talagrand’s random DNF

[Talagrand 96]

N terms of width w = o(d)
Draw t\V, ..., ™) € {0,1}9 with || = w

x satisfies 1) if x > 1

U, = all x that satisfy ) uniquely

Observation:
points in U; and U] are incomparable

—> embedding an arbitrary monotone function
in each U, results in a monotone function

Used by

Belovs-Blais 16, Chen-Waingarten-Xie 17]

Chen-De-Li-Nadimpal

Black-Blais-Harms 24]

I-Servedio 24]

A1)

@ 0)

A(N)

d/?2

11



9. ..and D, - what to put in each U;?

yes

« I, f(U) is arandom constant Vi

yes"

... f(U,) is random for every Vi

Observation 1
d i s : :
§ € {0,1}° distinguishes & ,,, and &, only if
| SN U;| > 1 for some i

—> Q(\/N ) to distinguish by birthday paradox

Observation 2
if |U, U -+ U Uy| = Q(29), then f will be
C2(1)-far from monotone who

—> Q(\/N) lower bound

Ul UN
? ?
)@ 3) A(N)

d/?2

12



For what N can we get f ~ &, to be €2(1)-far?

Termst = (¢, ..., t ™)) of width |tV = w

dl2 ++/d
U, = all x that satisfy ) uniquely
Ul U2 U3 UN
U=U,U---UUy ..canweget |U| = Q242
 We need Pr[x € U] = (1) for all x in upper middle a2
If |x| =d/2...
= [ #i1: ) < x] =N-(|x|/d)" M@ B V)

—N.27"
~ 1 if N~ 2"

13



For what N can we get f ~ &, to be 2(1)-far?

Termst = (¢, ..., ™)) of width |tV = w

U, = all x that satisfy ) uniquely
U=U,U---UUy ..canweget |U| = Q242

N — 2W d/?2
flxl=d/2+4/d.. Construction
| works when
_t[#l: l'(l) 5 X] N ~ 2\/67 A1) @) 3) )
=N - (|x|/d)"

= N-27%(1 4 2/A/d)*
=(1+2/\/ZZ)W %1 IfW%\/C_Z 14

—> ZQ(\/;Z) lower bound




On the parameters N and w

- Weneed |U| = Q29

« Number of terms that works is N = 2%

« Weneed Pr[x € U] = €2(1) forall xin a
window of \/c_l possible Hamming weights

—> This forces w < \/c_i

D@ B +(N)

d/?2

15



Generalizing to k-monotonicity

« Decompose upper middle layers into k
blocks By, ..., B,

» In each B; put a DNF
Terms t® = (¢, .. M)

l,]

e D, fU; ) is arandom constant Vi, j

e D, fU; ;) is randomVi, j
e Canset w X k\/c_i and N = 2kVd

— eXp(Q(k\/c_z’)) lower bound
Similar trick gives eXp(Q(rk\/Zl)) for

By

U, . = all x € B, satisfied uniquely by )

dI2 ++/d

di2 + (k— 1w/ d/k

functions with range [7]

d/2 +2+/d/lk
BZ \Uz,l \4 \ U,
, \ ' di2 ++/dlk
Bl /Ul,l U1,2 1N
dl2
l—(l,l) t(laz) oo l-(laN) t(zal) l‘(zaz) cee l—(zaN) oo t(kal) t(kaz) X l-(kaN) 16



Summary

Our lower bound:

(k)-Monotonicity testing of f: {0,1}¢ — [r] requires

exp(Q(rk\/Z’/e)) samples . \ \ \\ \ ey

» Testing is not easier than learning for any r, k, €

* (Up to log d factor in the exponent) i \ T X \ o+ 2
2 '\ /) a2 ++falk

« Was not knownevenforr=2 k=1

N1
Upper bound for learning over product spaces: \/

l.(l,l) t(l,Z) e t(l’N) t(z,l) l.(2,2) eee l-(z,N) oo t(k,l) t(k,z) oo t(k,N)

Can learn (k)-monotone f: R — [r] under product
distributions with exp( O (rk\/c_l/ £)) samples

 Improves on exp(ﬁ(k\/c_z’/ £%)) for r = 2 by [Harms-Yoshida 22]



