
1

Hadley Black
UC San Diego

RANDOM 2024

Nearly Optimal Bounds for Sample-Based
Testing and Learning of -Monotone Functionsk

Property Testing [Rubinfeld-Sudan 96, Goldreich-Goldwasser-Ron 98]

• Property P ⊂ F

• Universe of functions F : X → R

d(f, g) = Pr
x∈X

[f(x) ≠ g(x)]

Given oracle access to and :f ∈ F ε > 0
1. if : accept with prob.

2. if : reject with prob.

f ∈ P > 2/3
d(f, P) > ε > 2/3

Property Tester

ε-far

ε-close

P
d(f, P) = min

g∈P
d(f, g)• Distance:

F

2

PAC Learning [Valiant 84]

• Property P ⊂ F

• Universe of functions F : X → R
ε-far

ε-close

Given oracle access to and :f ∈ P ε > 0

• Output such that h ∈ F ℙh[d(f, h) ≤ ε] ≥ 2/3

PAC Learner

P

F
d(f, g) = Pr

x∈X
[f(x) ≠ g(x)]

d(f, P) = min
g∈P

d(f, g)• Distance:

3

When is testing easier than learning?

 sample learning
algorithm for

q
P

 sample testing
algorithm for

≈ q
P⟹

[GGR98]

Definition

A sample-based algorithm is one that is only allowed

to see the value of at uniform random points f
See where (x, f(x)) x ∼ 𝗎𝗇𝗂𝖿(X)

Question

When does testing require fewer samples than learning?

[GGR98], [KR00], [BBBY12], [GR16], [BFH21]

P

The standard access model for learning

4

f : {0,1}d → {0,1} monotone if whenever f(x) ≤ f(y) x ≺ y

Partial order: iff x ⪯ y xi ≤ yi, ∀i ∈ [d]

Monotone Functions

Learning with samples: samples [Bshouty-Tamon 96]exp(Õ (d1/2/ε))
Testing with queries: queries [Khot-Minzer-Safra 15]Õ (d1/2/ε2)
Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02,
Chakrabarty-Seshadhri 14, Chen-Servedio-Tan 15, Khot-Minzer-Safra 15, Chen-Waingarten-Xie 17

What about testing with samples?

[BT 96] + [GGR98]: exp(Õ (d1/2/ε))
 when

[GGLRS 00]
Ω(exp(d)/ε) ε ≤ d−3/2

We prove:

 for all

 [B 24]

exp(Ω(d1/2/ε))
d−1/2 ≤ ε ≤ c

What about
?ε ≫ d−3/2

In particular,
?ε = Ω(1)

5

Learning with samples: exp(Õ (kd1/2/ε)) [Blais-Cannone-Oliveira-Servedio-Tan 15]

 is -monotone if there does not exist such thatf : {0,1}d → {0,1} k x0 ≺ x1 ≺ … ≺ xk

-Monotone Functions(k)

What about testing with samples?

 for all , [B 24] exp(Ω(rkd1/2/ε)) d−1/2 ≤ ε ≤ c

Testing with queries (-sided error,): 1 k ≥ 2 exp(Θ̃ (d1/2)) [Grigorescu-Kumar-Wimmer 19],

[Canonne-Grigorescu-Guo-Kumar-Wimmer 19]

 for learning [B 24] exp(Õ (rkd1/2/ε))

f : {0,1}d → [r]

⋯f(x0) = 1

f(x1) = 0

f(x2) = 1

f(x3) = 0

We prove:

6

What can you hope to do with samples?

Query-based algorithms look for violations:

 where x ≺ y f(x) > f(y)

… if are samples, thenx, y

Pr[x ≺ y] =
d

∏
i=1

Pr[xi ≤ yi] = (3/4)d

 For samples, need to see even one

 comparable pair of points. I.e.
⟹ s s2 ≥ (4/3)d

s = exp(Ω(d))

 lower bound for 1-sided error sample-based testing⟹ exp(Ω(d))

f = 1

f = 0

x

y

Our goal: 2-sided error lower bound
7

Lower bound for Boolean function
monotonicity testing with samples

Theorem [B 24]
Testing monotonicity of requires samplesf : {0,1}d → {0,1} exp(Ω(d1/2))

We prove this for for a sufficiently small constant ε ≤ c c ∈ (0,1)

8

High level view: and 𝒟yes 𝒟no

Such that…

• A uniform random set of points
cannot tell if came from or

S exp(o(d1/2))
f 𝒟yes 𝒟no

Theorem [B 24]
Testing monotonicity of requires

 samples
f : {0,1}d → {0,1}

exp(Ω(d1/2))

f = 0

• : supported over monotone 𝒟yes f

Need to construct:

• : outputting that is -far with prob. 𝒟no f Ω(1) Ω(1)

f = 0

f = 1

f = 1

9

First, some simplifications

1) Focus on upper middle layers of the hypercube

Functions we define will satisfy

• whenever

• whenever

f(x) = 1 |x | > d/2 + d
f(x) = 0 |x | < d/2

(0,0,…,0)

(1,1,…,1)

2) Imagine middle layers are the same size

 ℓ ∈ [d1/2] ⟹ (d
d/2 + ℓ) ≈ d−1/2 ⋅ 2d

d
2

− d

d
2

+ d

d
2

10

Talagrand’s random DNF
[Talagrand 96]

 terms of width N w = o(d)

Draw with t(1), …, t(N) ∈ {0,1}d | t(i) | = w

 satisfies if x t(i) x ⪰ t(i)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

all that satisfy uniquelyUi = x t(i)

U1 U2 U3 UN

0 00 0 0

1 1

Observation:

points in and are incomparableUi Uj

 embedding an arbitrary monotone function

 in each results in a monotone function
⟹

Ui

? ? ? ?

Used by [Belovs-Blais 16, Chen-Waingarten-Xie 17]
[Chen-De-Li-Nadimpalli-Servedio 24]
[Black-Blais-Harms 24]

11

 and : what to put in each ?𝒟yes 𝒟no Ui

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d• : is a random constant 𝒟yes f(Ui) ∀i

• : is random for every 𝒟no f(Ui) ∀i

Observation 2
if , then will be

-far from monotone who
|U1 ∪ ⋯ ∪ UN | = Ω(2d) f

Ω(1)

Observation 1
 distinguishes and only if

 for some
S ⊆ {0,1}d 𝒟yes 𝒟no

|S ∩ Ui | > 1 i

 lower bound⟹ Ω(N)

? ? ? ?
U1 U2 U3 UN

12

 to distinguish by birthday paradox⟹ Ω(N)

For what can we get to be -far?N f ∼ 𝒟no Ω(1)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN

Terms of width t = (t(1), …, t(N)) | t(i) | = w

all that satisfy uniquelyUi = x t(i)

U = U1 ∪ ⋯ ∪ UN … can we get ?|U | = Ω(2d)

𝔼t[#i : t(i) ⪯ x]

 if ≈ 1 N ≈ 2w
= N ⋅ 2−w

If …|x | = d/2

= N ⋅ (|x | /d)w

13

• We need for all in upper middlePr[x ∈ U] = Ω(1) x

For what can we get to be -far?N f ∼ 𝒟no Ω(1)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN

Terms of width t = (t(1), …, t(N)) | t(i) | = w

all that satisfy uniquelyUi = x t(i)

U = U1 ∪ ⋯ ∪ UN … can we get ?|U | = Ω(2d)

𝔼t[#i : t(i) ⪯ x]

 N = 2w

= N ⋅ (|x | /d)w

If …|x | = d/2 + d

= N ⋅ 2−w(1 + 2/ d)w

= (1 + 2/ d)w ≈ 1 … if w ≈ d

Construction
works when

N ≈ 2 d

14

 lower bound⟹ 2Ω(d)

On the parameters and N w

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN
• We need |U | = Ω(2d)

• Number of terms that works is N = 2w

• We need for all in a
window of possible Hamming weights

Pr[x ∈ U] = Ω(1) x
d

 This forces ⟹ w ≤ d

15

Generalizing to -monotonicityk

d/2

d/2 + d

d/2 + d /k

d/2 + 2 d /k

d/2 + (k − 1) d /k

B1

B2

Bk

⋯t(1,1) t(1,2) t(1,N) ⋯t(2,1) t(2,2) t(2,N) ⋯t(k,1) t(k,2) t(k,N)⋯

all satisfied uniquely by Ui,j = x ∈ Bi t(i,j)

• Decompose upper middle layers into
blocks

k
B1, …, Bk

• In each put a DNFBi

Terms t(i) = (t(i,1), …, t(i,N))

• : is a random constant 𝒟yes f(Ui,j) ∀i, j

• : is random𝒟no f(Ui,j) ∀i, j

• Can set and w ≈ k d N ≈ 2k d

 lower bound⟹ exp(Ω(k d))

Similar trick gives for
functions with range

exp(Ω(rk d))
[r]

⋮ ⋮

U1,1 U1,2 U1,N

U2,1 U2,2 U2,N

Uk,1 Uk,2 Uk,N

16

Summary

⋯t(1,1) t(1,2) t(1,N)

d/2

d/2 + d

d/2 + d /k

d/2 + 2 d /k

d/2 + (k − 1) d /k

B1

B2

Bk

⋯t(2,1) t(2,2) t(2,N) ⋯t(k,1) t(k,2) t(k,N)⋯

Our lower bound:

-Monotonicity testing of requires
 samples

(k) f : {0,1}d → [r]
exp(Ω(rk d /ε))

• Testing is not easier than learning for any r, k, ε

• Was not known even for r = 2, k = 1
• (Up to factor in the exponent)log d

Upper bound for learning over product spaces:

Can learn -monotone under product
distributions with samples

(k) f : ℝd → [r]
exp(Õ (rk d /ε))

• Improves on for by [Harms-Yoshida 22]exp(Õ (k d /ε2)) r = 2 17

