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Property Testing [Rubinfeld-Sudan 96, Goldreich-Goldwasser-Ron 98]

• Property P ⊂ F

• Universe of functions F : X → R

d( f, g) = Pr
x∈X

[ f(x) ≠ g(x)]

Given oracle access to  and :f ∈ F ε > 0
1. if :           accept with prob. 

2. if :  reject with prob. 

f ∈ P > 2/3
d( f, P) > ε > 2/3

Property Tester

ε-far

ε-close

P
d( f, P) = min

g∈P
d( f, g)• Distance:

F
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PAC Learning [Valiant 84]

• Property P ⊂ F

• Universe of functions F : X → R
ε-far

ε-close

Given oracle access to  and :f ∈ P ε > 0

• Output  such that   h ∈ F ℙh[d( f, h) ≤ ε] ≥ 2/3

PAC Learner

P

F
d( f, g) = Pr

x∈X
[ f(x) ≠ g(x)]

d( f, P) = min
g∈P

d( f, g)• Distance:
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When is testing easier than learning?

 sample learning 
algorithm for 

q
P

 sample testing 
algorithm for 

≈ q
P⟹

[GGR98]

Definition

A sample-based algorithm is one that is only allowed 

to see the value of  at uniform random points f
See  where  (x, f(x)) x ∼ 𝗎𝗇𝗂𝖿(X)

Question

When does testing require fewer samples than learning?

[GGR98], [KR00], [BBBY12], [GR16], [BFH21]

P

The standard access model for learning
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f : {0,1}d → {0,1} monotone if  whenever f(x) ≤ f(y) x ≺ y

Partial order:  iff x ⪯ y xi ≤ yi, ∀i ∈ [d]

Monotone Functions

Learning with samples:   samples [Bshouty-Tamon 96]exp( Õ (d1/2/ε))
Testing with queries:   queries [Khot-Minzer-Safra 15]Õ (d1/2/ε2)
Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02, 
Chakrabarty-Seshadhri 14, Chen-Servedio-Tan 15, Khot-Minzer-Safra 15, Chen-Waingarten-Xie 17


What about testing with samples?

[BT 96] + [GGR98]:  exp( Õ (d1/2/ε))
 when  

[GGLRS 00]
Ω( exp(d)/ε) ε ≤ d−3/2

We prove: 

 for all 

 [B 24] 

exp(Ω(d1/2/ε))
d−1/2 ≤ ε ≤ c

What about 
?ε ≫ d−3/2

In particular, 
?ε = Ω(1)
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Learning with samples:  exp( Õ (kd1/2/ε)) [Blais-Cannone-Oliveira-Servedio-Tan 15] 

 is -monotone if there does not exist  such thatf : {0,1}d → {0,1} k x0 ≺ x1 ≺ … ≺ xk

-Monotone Functions(k)

What about testing with samples?

 for all , [B 24] exp(Ω(rkd1/2/ε)) d−1/2 ≤ ε ≤ c

Testing with queries ( -sided error, ): 1 k ≥ 2 exp( Θ̃ (d1/2)) [Grigorescu-Kumar-Wimmer 19], 

[Canonne-Grigorescu-Guo-Kumar-Wimmer 19]

 for learning [B 24] exp( Õ (rkd1/2/ε))

f : {0,1}d → [r]

⋯f(x0) = 1

f(x1) = 0

f(x2) = 1

f(x3) = 0

We prove:
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What can you hope to do with samples?

Query-based algorithms look for violations: 


 where x ≺ y f(x) > f(y)

… if  are samples, thenx, y

Pr[x ≺ y] =
d

∏
i=1

Pr[xi ≤ yi] = (3/4)d

 For  samples, need  to see even one 

        comparable pair of points. I.e. 
⟹ s s2 ≥ (4/3)d

s = exp(Ω(d))

  lower bound for 1-sided error sample-based testing⟹ exp(Ω(d))

f = 1

f = 0

x

y

Our goal: 2-sided error lower bound
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Lower bound for Boolean function 
monotonicity testing with samples

Theorem [B 24]  
Testing monotonicity of  requires  samplesf : {0,1}d → {0,1} exp(Ω(d1/2))

We prove this for  for a sufficiently small constant ε ≤ c c ∈ (0,1)
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High level view:  and 𝒟yes 𝒟no

Such that… 

• A uniform random set  of  points 
cannot tell if  came from  or 

S exp(o(d1/2))
f 𝒟yes 𝒟no

Theorem [B 24]  
Testing monotonicity of  requires 

 samples
f : {0,1}d → {0,1}

exp(Ω(d1/2))

f = 0

• : supported over monotone 𝒟yes f

Need to construct:

• : outputting  that is -far with prob. 𝒟no f Ω(1) Ω(1)

f = 0

f = 1

f = 1
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First, some simplifications

1) Focus on upper middle layers of the hypercube

Functions we define will satisfy

•  whenever 

•  whenever 

f(x) = 1 |x | > d/2 + d
f(x) = 0 |x | < d/2

(0,0,…,0)

(1,1,…,1)

2) Imagine middle layers are the same size

 ℓ ∈ [d1/2] ⟹ ( d
d/2 + ℓ) ≈ d−1/2 ⋅ 2d

d
2

− d

d
2

+ d

d
2
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Talagrand’s random DNF
[Talagrand 96]

 terms of width N w = o(d)

Draw  with  t(1), …, t(N) ∈ {0,1}d | t(i) | = w

 satisfies  if x t(i) x ⪰ t(i)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

all  that satisfy  uniquelyUi = x t(i)

U1 U2 U3 UN

0 00 0 0

1 1

Observation: 

points in  and  are incomparableUi Uj

 embedding an arbitrary monotone function 

        in each  results in a monotone function
⟹

Ui

? ? ? ?

Used by [Belovs-Blais 16, Chen-Waingarten-Xie 17]
[Chen-De-Li-Nadimpalli-Servedio 24]
[Black-Blais-Harms 24]
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  and : what to put in each ?𝒟yes 𝒟no Ui

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d• :  is a random constant 𝒟yes f(Ui) ∀i

• :  is random for every 𝒟no f(Ui) ∀i

Observation 2  
if , then  will be 

-far from monotone who
|U1 ∪ ⋯ ∪ UN | = Ω(2d) f

Ω(1)

Observation 1 
  distinguishes  and  only if 

 for some 
S ⊆ {0,1}d 𝒟yes 𝒟no

|S ∩ Ui | > 1 i

    lower bound⟹ Ω( N)

? ? ? ?
U1 U2 U3 UN

12

    to distinguish by birthday paradox⟹ Ω( N)



For what  can we get  to be -far?N f ∼ 𝒟no Ω(1)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN

Terms  of width t = (t(1), …, t(N)) | t(i) | = w

all  that satisfy  uniquelyUi = x t(i)

U = U1 ∪ ⋯ ∪ UN … can we get ?|U | = Ω(2d)

𝔼t[#i : t(i) ⪯ x]

  if ≈ 1 N ≈ 2w
= N ⋅ 2−w

If …|x | = d/2

= N ⋅ ( |x | /d)w

13

• We need  for all  in upper middlePr[x ∈ U] = Ω(1) x



For what  can we get  to be -far?N f ∼ 𝒟no Ω(1)

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN

Terms  of width t = (t(1), …, t(N)) | t(i) | = w

all  that satisfy  uniquelyUi = x t(i)

U = U1 ∪ ⋯ ∪ UN … can we get ?|U | = Ω(2d)

𝔼t[#i : t(i) ⪯ x]

 N = 2w

= N ⋅ ( |x | /d)w

If …|x | = d/2 + d

= N ⋅ 2−w(1 + 2/ d)w

= (1 + 2/ d)w ≈ 1 … if w ≈ d

Construction 
works when 

N ≈ 2 d
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    lower bound⟹ 2Ω( d)



On the parameters  and N w

⋯t(1) t(2) t(3) t(N)
w

d/2

d/2 + d

U1 U2 U3 UN
• We need |U | = Ω(2d)

• Number of terms that works is  N = 2w

• We need  for all  in a 
window of  possible Hamming weights

Pr[x ∈ U] = Ω(1) x
d

 This forces ⟹ w ≤ d
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Generalizing to -monotonicityk

d/2

d/2 + d

d/2 + d /k

d/2 + 2 d /k

d/2 + (k − 1) d /k

B1

B2

Bk

⋯t(1,1) t(1,2) t(1,N) ⋯t(2,1) t(2,2) t(2,N) ⋯t(k,1) t(k,2) t(k,N)⋯

all  satisfied uniquely by Ui,j = x ∈ Bi t(i,j)

• Decompose upper middle layers into  
blocks  

k
B1, …, Bk

• In each  put a DNFBi

Terms t(i) = (t(i,1), …, t(i,N))

• :  is a random constant 𝒟yes f(Ui,j) ∀i, j

• :  is random𝒟no f(Ui,j) ∀i, j

• Can set  and w ≈ k d N ≈ 2k d

 lower bound⟹ exp(Ω(k d))

Similar trick gives  for 
functions with range 

exp(Ω(rk d))
[r]

⋮ ⋮

U1,1 U1,2 U1,N

U2,1 U2,2 U2,N

Uk,1 Uk,2 Uk,N
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Summary

⋯t(1,1) t(1,2) t(1,N)

d/2

d/2 + d

d/2 + d /k

d/2 + 2 d /k

d/2 + (k − 1) d /k

B1

B2

Bk

⋯t(2,1) t(2,2) t(2,N) ⋯t(k,1) t(k,2) t(k,N)⋯

Our lower bound:

-Monotonicity testing of  requires 
 samples

(k) f : {0,1}d → [r]
exp(Ω(rk d /ε))

• Testing is not easier than learning for any r, k, ε

• Was not known even for r = 2, k = 1
• (Up to  factor in the exponent)log d

Upper bound for learning over product spaces:

Can learn -monotone  under product 
distributions with  samples

(k) f : ℝd → [r]
exp( Õ (rk d /ε))

• Improves on  for  by [Harms-Yoshida 22]exp( Õ (k d /ε2)) r = 2 17


