Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions

RANDOM 2024

Hadley Black UC San Diego

Property Testing [Rubinfeld-Sudan 96, Goldreich-Goldwasser-Ron 98]

- Universe of functions $F \colon X \to R$
- Property $P \subset F$

• Distance:

$$d(f,g) = \Pr_{x \in X} [f(x) \neq g(x)]$$
$$d(f,P) = \min_{g \in P} d(f,g)$$

Property Tester

Given oracle access to $f \in F$ and $\varepsilon > 0$:

1. if $f \in P$:accept with prob. > 2/32. if $d(f, P) > \varepsilon$: reject with prob. > 2/3

PAC Learning [Valiant 84]

- Universe of functions $F: X \to R$
- Property $P \subset F$

• Distance:
$$d(f,g) = \Pr_{x \in X} [f(x) \neq g(x)]$$
$$d(f,P) = \min_{g \in P} d(f,g)$$

PAC Learner

Given oracle access to $f \in P$ and $\varepsilon > 0$:

• Output $h \in F$ such that $\mathbb{P}_h[d(f, h) \leq \varepsilon] \geq 2/3$

When is testing easier than learning?

q sample **learning** algorithm for P

Definition

A sample-based algorithm is one that is only allowed to see the value of f at uniform random points

See (x, f(x)) where $x \sim unif(X)$

The standard access model for learning

Question

When does testing require fewer samples than learning? [GGR98], [KR00], [BBBY12], [GR16], [BFH21]

 $\approx q$ sample **testing** algorithm for P

Monotone Functions

 $f: \{0,1\}^d \rightarrow \{0,1\}$ monotone if $f(x) \leq f(y)$ whenever $x \prec y$

Partial order: $x \leq y$ iff $x_i \leq y_i, \forall i \in [d]$

Learning with samples: $\exp(\widetilde{O}(d^{1/2}/\varepsilon))$ samples [Bshouty-Tamon 96]

Testing with queries: $\widetilde{O}(d^{1/2}/\varepsilon^2)$ queries [Khot-Minzer-Safra 15]

Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02, Chakrabarty-Seshadhri 14, Chen-Servedio-Tan 15, Khot-Minzer-Safra 15, Chen-Waingarten-Xie 17

What about testing with samples?

We prove:

 $\exp(\Omega(d^{1/2}/\varepsilon))$ for all

 $d^{-1/2} \le \varepsilon \le c$ [B 24]

What about $\varepsilon \gg d^{-3/2}$?

In particular, $\varepsilon = \Omega(1)?$

(k)-Monotone Functions

What can you hope to do with samples?

Query-based algorithms look for violations:

 $x \prec y$ where f(x) > f(y)

 \dots if x, y are **samples**, then

$$\Pr[x \prec y] = \prod_{i=1}^{d} \Pr[x_i \le y_i] = (3/4)^d$$

⇒ For *s* samples, need $s^2 \ge (4/3)^d$ to see **even one** comparable pair of points. I.e. $s = \exp(\Omega(d))$

 $\implies \exp(\Omega(d))$ lower bound for 1-sided error sample-based testing

Our goal: 2-sided error lower bound

Lower bound for Boolean function monotonicity testing with samples

 $\begin{array}{l} \text{Theorem [B 24]} \\ \text{Testing monotonicity of } f\colon \{0,1\}^d \to \{0,1\} \text{ requires } \exp\bigl(\Omega(d^{1/2})\bigr) \text{ samples} \end{array}$

We prove this for $\varepsilon \leq c$ for a sufficiently small constant $c \in (0,1)$

High level view: \mathcal{D}_{ves} and \mathcal{D}_{no}

 $\begin{array}{l} \text{Theorem [B 24]} \\ \text{Testing monotonicity of } f\colon \{0,1\}^d \to \{0,1\} \text{ requires} \\ \exp\bigl(\Omega(d^{1/2})\bigr) \text{ samples} \end{array}$

Need to construct:

- $\mathcal{D}_{\textit{yes}}$: supported over monotone f
- \mathcal{D}_{no} : outputting f that is $\Omega(1)$ -far with prob. $\Omega(1)$

Such that...

• A uniform random set *S* of $\exp(o(d^{1/2}))$ points cannot tell if *f* came from \mathscr{D}_{yes} or \mathscr{D}_{no}

First, some simplifications

1) Focus on upper middle layers of the hypercube

Functions we define will satisfy

- f(x) = 1 whenever $|x| > d/2 + \sqrt{d}$
- f(x) = 0 whenever |x| < d/2

2) Imagine middle layers are the same size

$$\ell \in [d^{1/2}] \implies \begin{pmatrix} d \\ d/2 + \ell \end{pmatrix} \approx d^{-1/2} \cdot 2^d$$

Talagrand 96]

N terms of width w = o(d)Draw $t^{(1)}, \dots, t^{(N)} \in \{0,1\}^d$ with $|t^{(i)}| = w$ x satisfies $t^{(i)}$ if $x \ge t^{(i)}$

 $U_i = \text{all } x$ that satisfy $t^{(i)}$ uniquely

Observation: points in U_i and U_j are incomparable

 \Longrightarrow embedding an arbitrary monotone function in each U_i results in a monotone function

Used by [Belovs-Blais 16, Chen-Waingarten-Xie 17] [Chen-De-Li-Nadimpalli-Servedio 24] [Black-Blais-Harms 24]

 \mathcal{D}_{ves} and \mathcal{D}_{no} : what to put in each U_i ?

- \mathcal{D}_{ves} : $f(U_i)$ is a random constant $\forall i$
- \mathcal{D}_{no} : $f(U_i)$ is **random** for every $\forall i$

Observation 1

 $S \subseteq \{0,1\}^d$ distinguishes \mathscr{D}_{yes} and \mathscr{D}_{no} only if $|S \cap U_i| > 1$ for some *i*

 $\Omega(\sqrt{N})$ to distinguish by birthday paradox

Observation 2

if $|U_1 \cup \cdots \cup U_N| = \Omega(2^d)$, then f will be $\Omega(1)$ -far from monotone who

For what N can we get $f \sim \mathcal{D}_{no}$ to be $\Omega(1)$ -far?

Terms
$$\boldsymbol{t} = (t^{(1)}, \dots, t^{(N)})$$
 of width $|t^{(i)}| = w$
 $U_i = \text{all } x$ that satisfy $t^{(i)}$ uniquely
 $U = U_1 \cup \dots \cup U_N$... can we get $|U| = \Omega(2^{n})$

• We need $\Pr[x \in U] = \Omega(1)$ for all x in upper middle

If |x| = d/2...

$$\mathbb{E}_{t}[\#i: t^{(i)} \leq x] = N \cdot (|x|/d)^{w}$$
$$= N \cdot 2^{-w}$$
$$\approx 1 \quad \text{if } N \approx 2^{w}$$

For what N can we get $f \sim \mathcal{D}_{no}$ to be $\Omega(1)$ -far?

Terms
$$t = (t^{(1)}, ..., t^{(N)})$$
 of width $|t^{(i)}| = w$
 $U_i = \text{all } x$ that satisfy $t^{(i)}$ uniquely
 $U = U_1 \cup \cdots \cup U_N$... can we get $|U| = \Omega(2^{\circ})$
 $N = 2^{w}$
If $|x| = d/2 + \sqrt{d}$...
 $\mathbb{E}_t[\#i: t^{(i)} \leq x]$
 $= N \cdot (|x|/d)^w$
 $= N \cdot 2^{-w}(1 + 2/\sqrt{d})^w$
 $= (1 + 2/\sqrt{d})^w \approx$

On the parameters *N* and *w*

- We need $|U| = \Omega(2^d)$
- Number of terms that works is $N = 2^{w}$
- We need $\Pr[x \in U] = \Omega(1)$ for all x in a window of \sqrt{d} possible Hamming weights

$$\implies$$
 This forces $w \leq \sqrt{d}$

Generalizing to k-monotonicity

- Decompose upper middle layers into k blocks B_1, \ldots, B_k
- In each B_i put a DNF Terms $t^{(i)} = (t^{(i,1)}, \dots, t^{(i,N)})$ $U_{i,j} = \text{all } x \in B_i$ satisfied uniquely by $t^{(i,j)}$
- \mathcal{D}_{yes} : $f(U_{i,j})$ is a random constant $\forall i, j$
- \mathcal{D}_{no} : $f(U_{i,j})$ is random $\forall i, j$
- Can set $w \approx k\sqrt{d}$ and $N \approx 2^{k\sqrt{d}}$
- $\implies \exp(\Omega(k\sqrt{d}))$ lower bound

Similar trick gives $\exp(\Omega(rk\sqrt{d}))$ for functions with range [r]

 B_k

 B_2

 B_1

Summary

Our lower bound:

(k)-Monotonicity testing of $f: \{0,1\}^d \rightarrow [r]$ requires $\exp(\Omega(rk\sqrt{d/\varepsilon}))$ samples

- Testing is not easier than learning for any r, k, ε
 - (Up to log d factor in the exponent)
- Was not known even for r = 2, k = 1

Upper bound for learning over product spaces:

Can learn (k)-monotone $f: \mathbb{R}^d \to [r]$ under product distributions with $\exp(\widetilde{O}(rk\sqrt{d/\varepsilon}))$ samples

• Improves on $\exp(\widetilde{O}(k\sqrt{d}/\varepsilon^2))$ for r = 2 by [Harms-Yoshida 22]

