Testing and Learning Convex Sets in the Ternary Hypercube

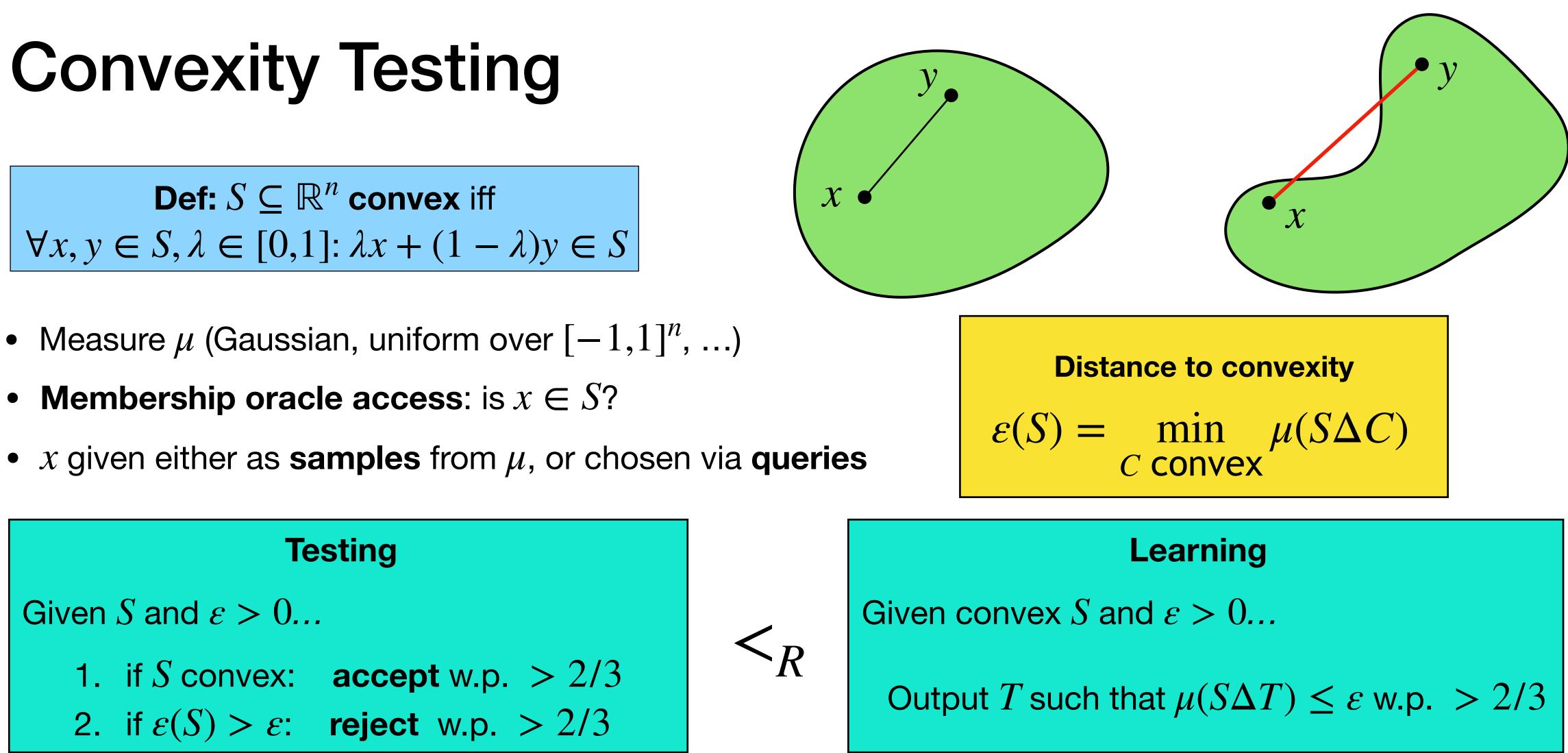
ITCS 24

Eric Blais University of Waterloo

<u>Hadley Black</u> UCSD

Nathan Harms EPFL

Def: $S \subseteq \mathbb{R}^n$ **convex** iff



How hard is it to test convexity with queries in n dimensions?

Question

Prior Work on Convexity Testing

- Klivans-O'Donnell-Servedio [08]: $2^{\widetilde{O}(n^{1/2})}$ for **learning** with **samples** under Gaussian
- Chen-Freilich-Servedio-Sun [17]: $2^{\Theta(n^{1/2})}$ for **testing** with **samples** under Gaussian
- Schmeltz [92], Raskhodnikova [03], Berman-Murzabulatov-Raskhodnikova [19],[19],[22]: Testing and learning over $[m]^2$ and $[0,1]^2$

What about queries in high dimensions?

Rademacher-Vempala [04], Blais-Bommireddi [20]: testers that spot check for violations require $2^{\Omega(n)}$ queries

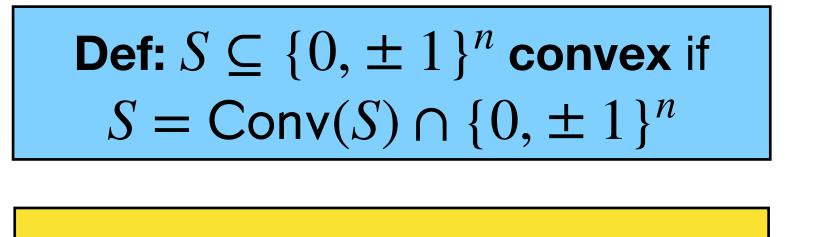
Query-based high-dimensional convexity testing is a wide open problem

???

The Ternary Hypercube

Black-Blais-Harms **[ITCS 24]**

• We consider sets in the **ternary hypercube** $\{-1,0,1\}^n$

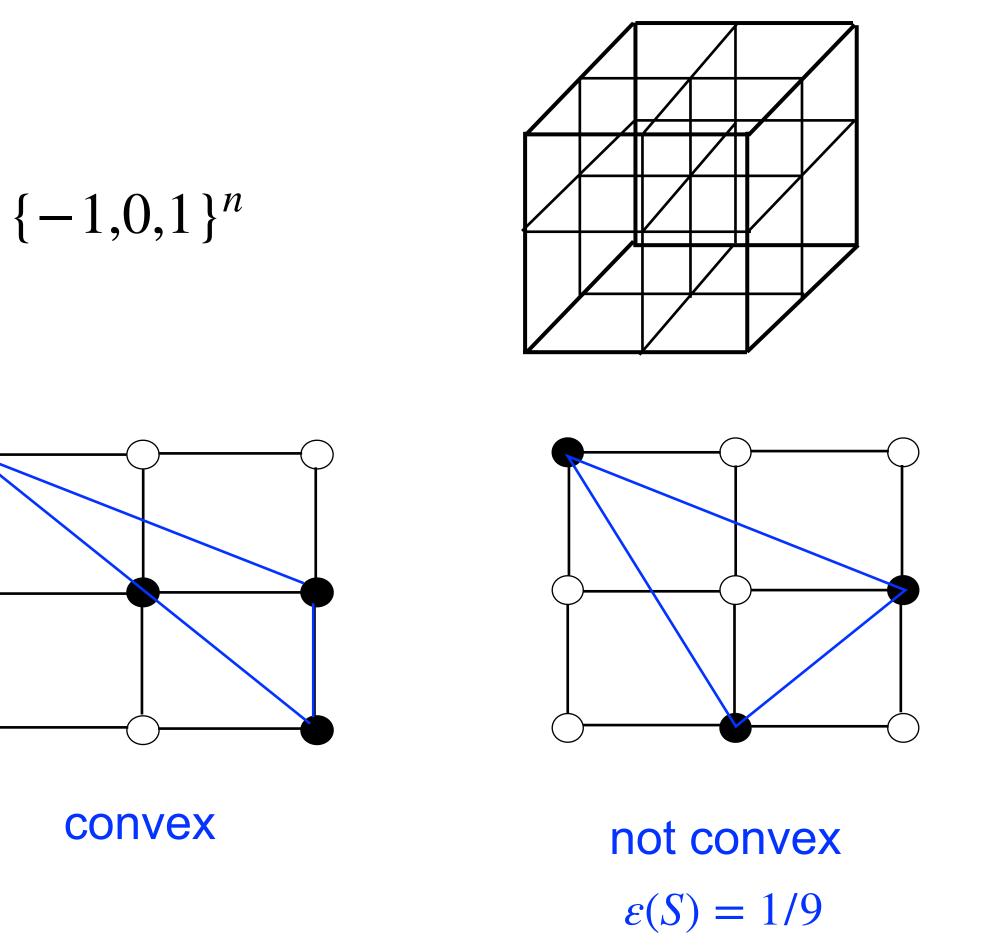


Distance to convexity

$$\varepsilon(S) = \min_{C \text{ convex}} 3^{-n} |S\Delta C|$$

Why the ternary cube?

•
$$Z \approx \frac{1}{\sqrt{k}} \sum_{i=1}^{k} X_i$$
 where $Z \sim \mathcal{N}(0,1)$ and $X_i \sim$

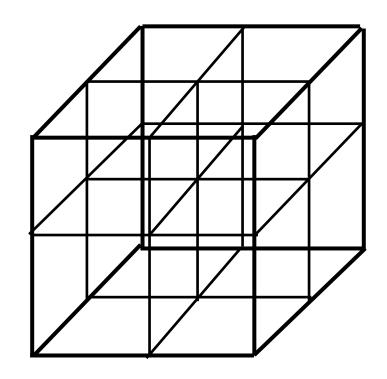


• simplest high-dimensional domain where convexity is a non-trivial property (all sets in $\{\pm 1\}^n$ are convex)

 $unif(\{-1,0,1\})$

Our Results

Black-Blais-Harms [ITCS 24]



Computational:

Learning and testing with samples: $2^{\widetilde{O}(n^{3/4})}$

Learning and testing with samples: $2^{\Omega(n^{1/2})}$

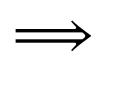
Structural:

All convex sets satisfy $I(S) \leq O(n^{3/4})$

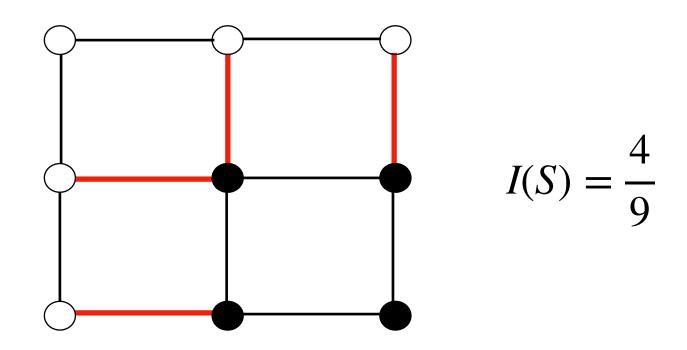
There exists a convex set with $I(S) \ge \Omega(n^{3/4})$

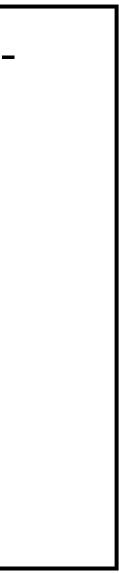
 Uses the "Low-Degree Algorithm" of Linial-Mansour-Nisan 93

$$I(S) \le B \implies \sum_{T: |T| > B/\varepsilon} \widehat{S}(T)^2 \le \varepsilon$$



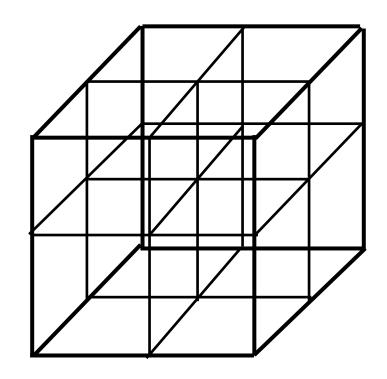
Can learn *S* to error ε with poly(n^B , 1/ ε) samples





Our Results

Black-Blais-Harms [ITCS 24]



Computational:

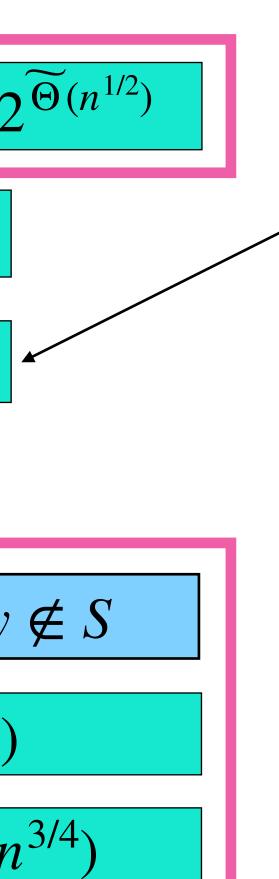
Learning and testing with samples: $2^{\widetilde{O}(n^{3/4})}$

Learning and testing with samples: $2^{\Omega(n^{1/2})}$

Structural:

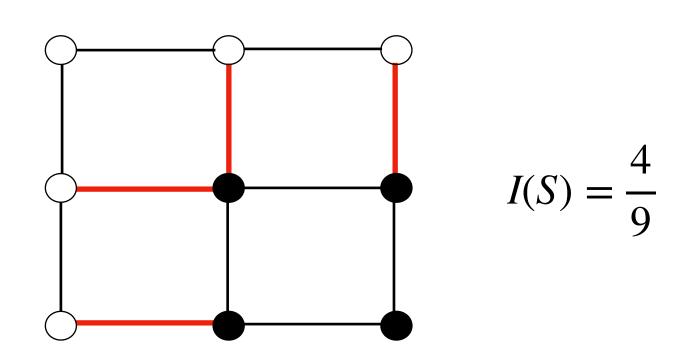
All convex sets satisfy $I(S) \leq O(n^{3/4})$

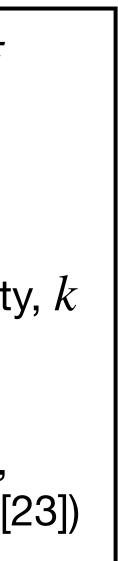
There exists a convex set with $I(S) \ge \Omega(n^{3/4})$



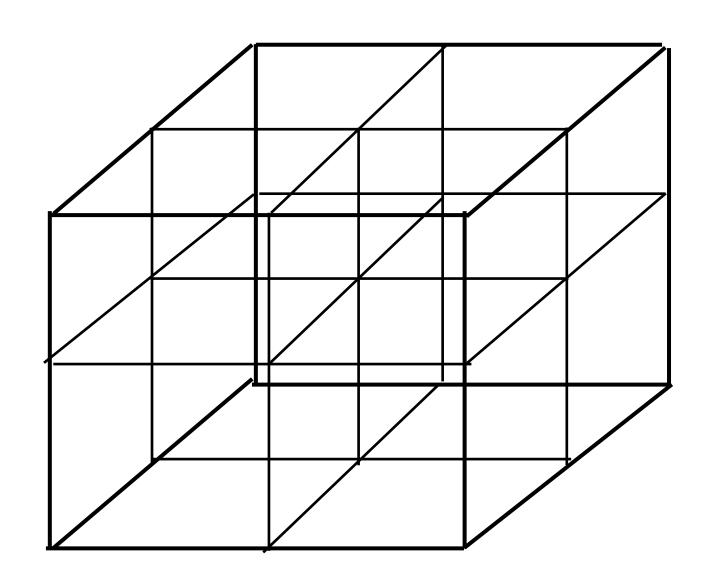
- Uses a version of Talagrand's random DNF (Talagrand [96]) adapted to $\{0, \pm 1\}^n$
- Talagrand's random DNF has been used to prove lower bounds for testing monotonicity, k -monotonicity, and unateness in {±1}ⁿ

(Belovs-Blais [16], Chen-Waingarten-Xie [17], Chen-De-Li-Nadimpalli-Servedio [23], Black [23])



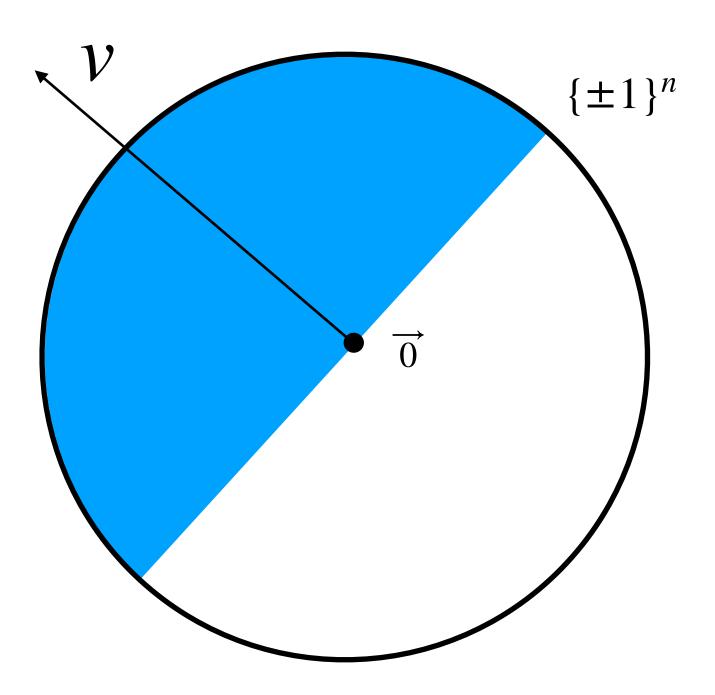


The Influence of Convex Sets



The maximum influence of convex sets in $\{0, \pm 1\}^n$ is $\widetilde{\Theta}(n^{3/4})$

Halfspace $H = \{x \colon \langle x, \overrightarrow{1} \rangle \ge 0\}$



Def: $I(S) = 3^{-n} \cdot \#$ edges $(x, y) : x \in S, y \notin S$

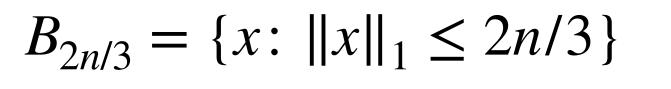
 $= \mathbb{E}_{x}[\# edges (x, y) \colon x \in S, y \notin S]$

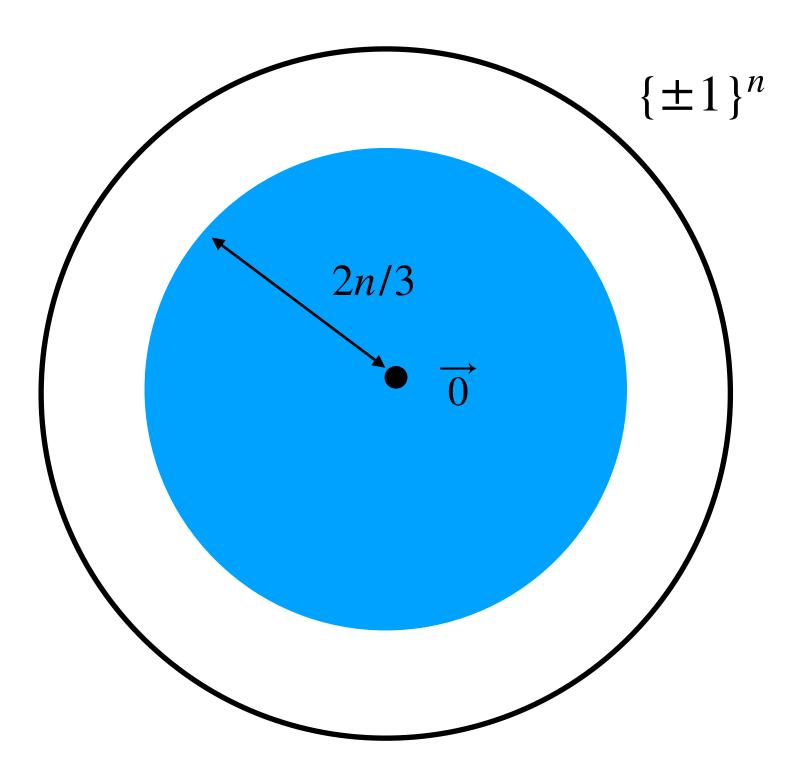
$$I(H) \approx \mathbb{P}_{x}[\langle x, \overrightarrow{1} \rangle = 0] \cdot \Theta(n)$$

$$\approx \mathbb{P}_x \left[\sum_i x_i = 0 \right] \cdot \Theta(n)$$

 $\approx \Theta(n^{1/2})$

Examples





Def: $I(S) = 3^{-n} \cdot \#$ edges $(x, y) : x \in S, y \notin S$

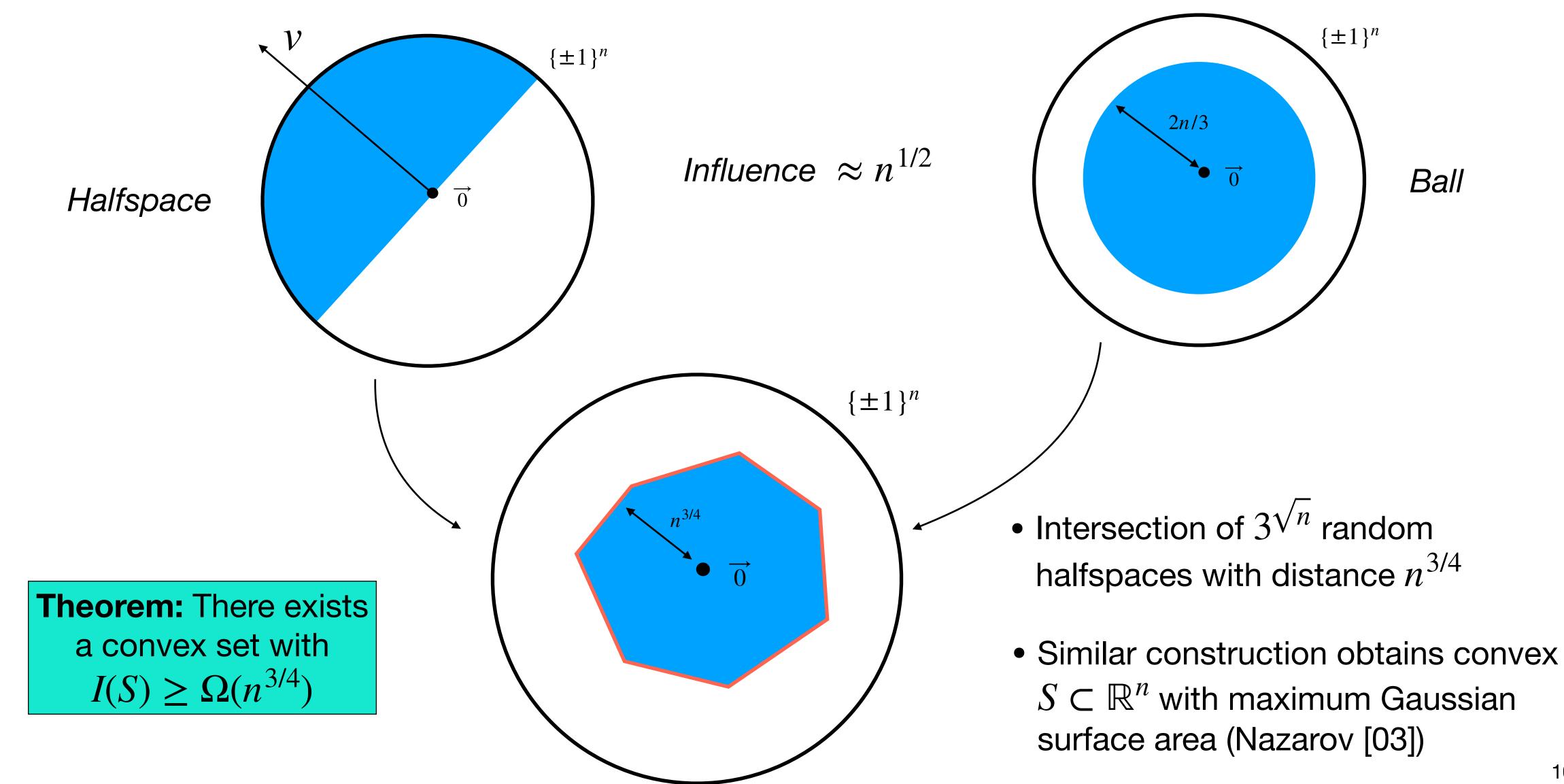
 $= \mathbb{E}_{x}[\# edges (x, y) \colon x \in S, y \notin S]$

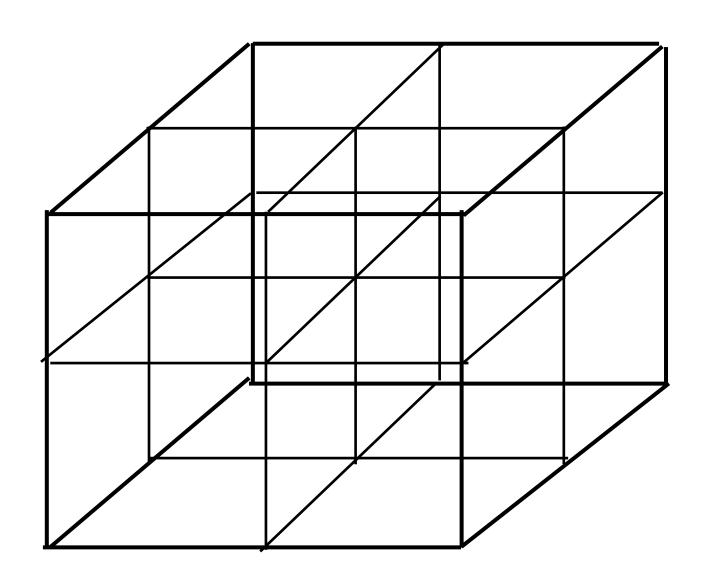
$$I(B_{2n/3}) = \mathbb{P}_{x}[\|x\|_{1} = 2n/3] \cdot 2n/3$$

$$=\frac{1}{3^n}\binom{n}{2n/3}\cdot 2^{2n/3}\cdot\Theta(n)$$

 $\approx \Theta(n^{1/2})$

High Influence Set





Proof Sketch

All convex sets satisfy $I(S) \le O(n^{3/4})$

The Edge-Boundary of Convex Sets

Def: $I(S) = 3^{-n} \cdot \# \text{ edges } (x, y) : S(x) \neq S(y)$ $\approx n \cdot \mathbb{P}_{(x,y)}[S(x) \neq S(y)]$

Distribution *D* **over edges**:

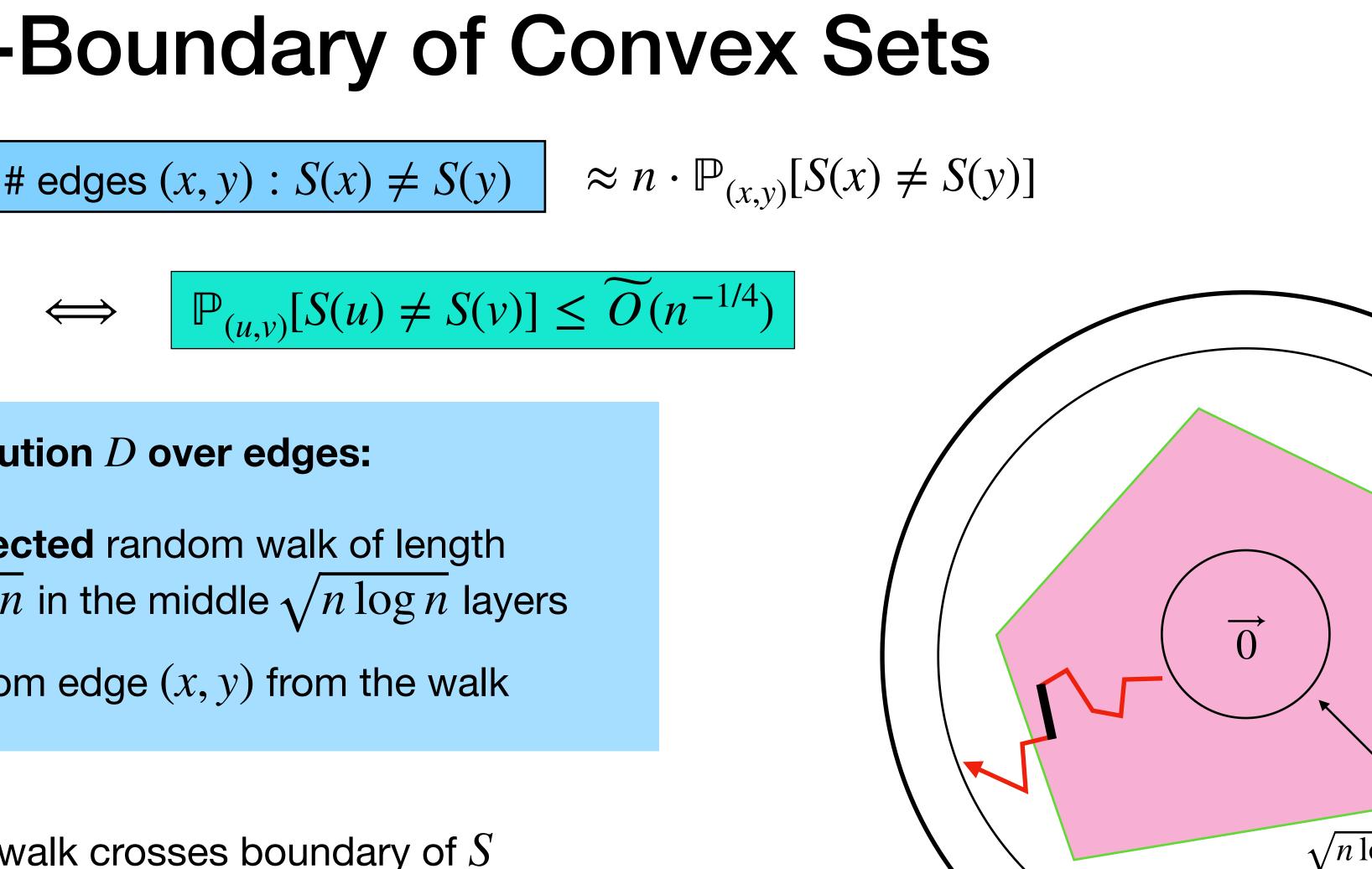
- Perform a **directed** random walk of length $m \approx \sqrt{n/\log n}$ in the middle $\sqrt{n\log n}$ layers
- Return a random edge (x, y) from the walk

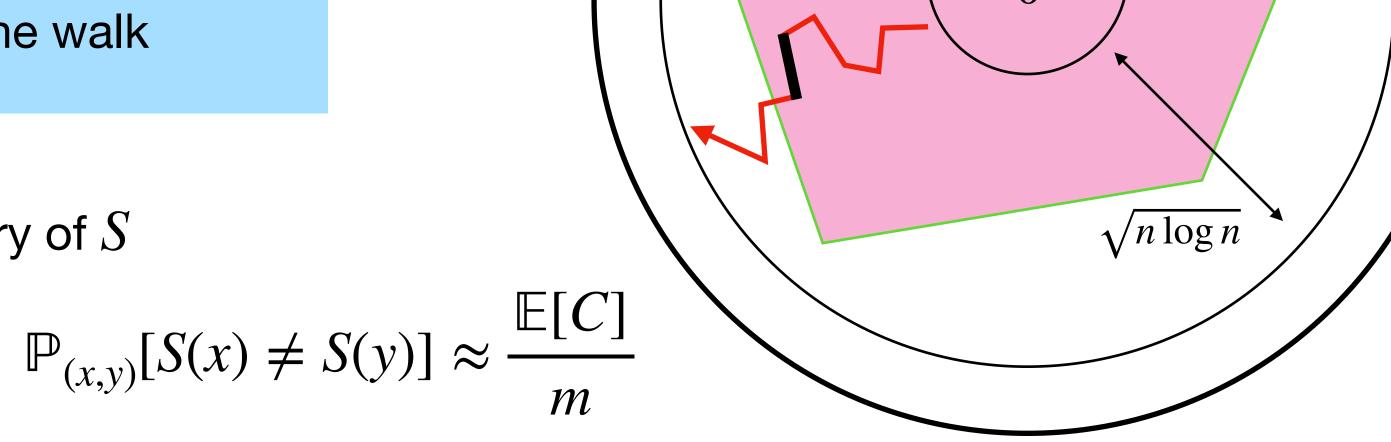
Let C = # times walk crosses boundary of S

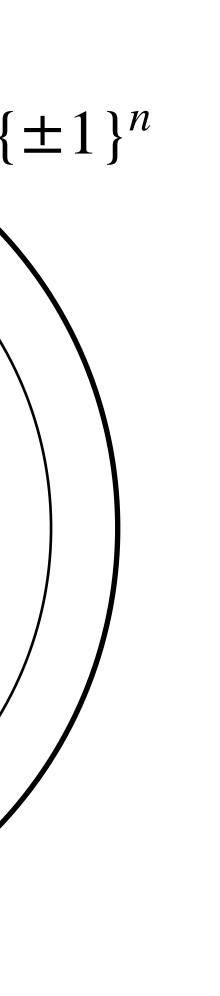
1) D is "close" to uniform \implies

2) $\mathbb{E}[C] \leq O(\sqrt{m})$

 $I(S) \leq \widetilde{O}(n^{3/4})$







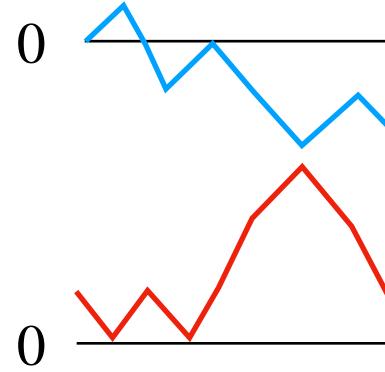
Halfspaces and 1-D Walks

Lemma: $\mathbb{E}[C] \leq O(\sqrt{m})$

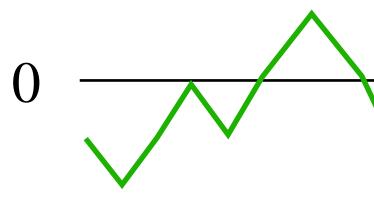
 $S \text{ convex} \implies S = \bigcap^{k} H_i$ where $H_i = \{x \colon \langle x, v_i \rangle < \tau_i\}$ i=1

 $w_1(t) = \langle z^{(t)}, v_1 \rangle - \tau_1$

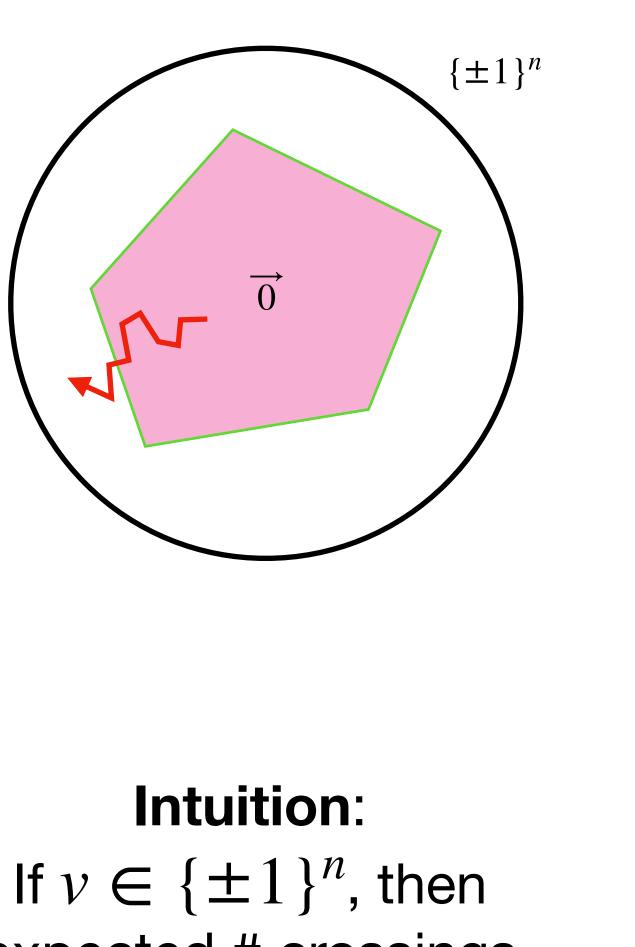
 $w_2(t) = \langle z^{(t)}, v_2 \rangle - \tau_2$



$$w_k(t) = \langle z^{(t)}, v_k \rangle - \tau_k$$



т \mathcal{M} M



expected # crossings for a single walk is

13

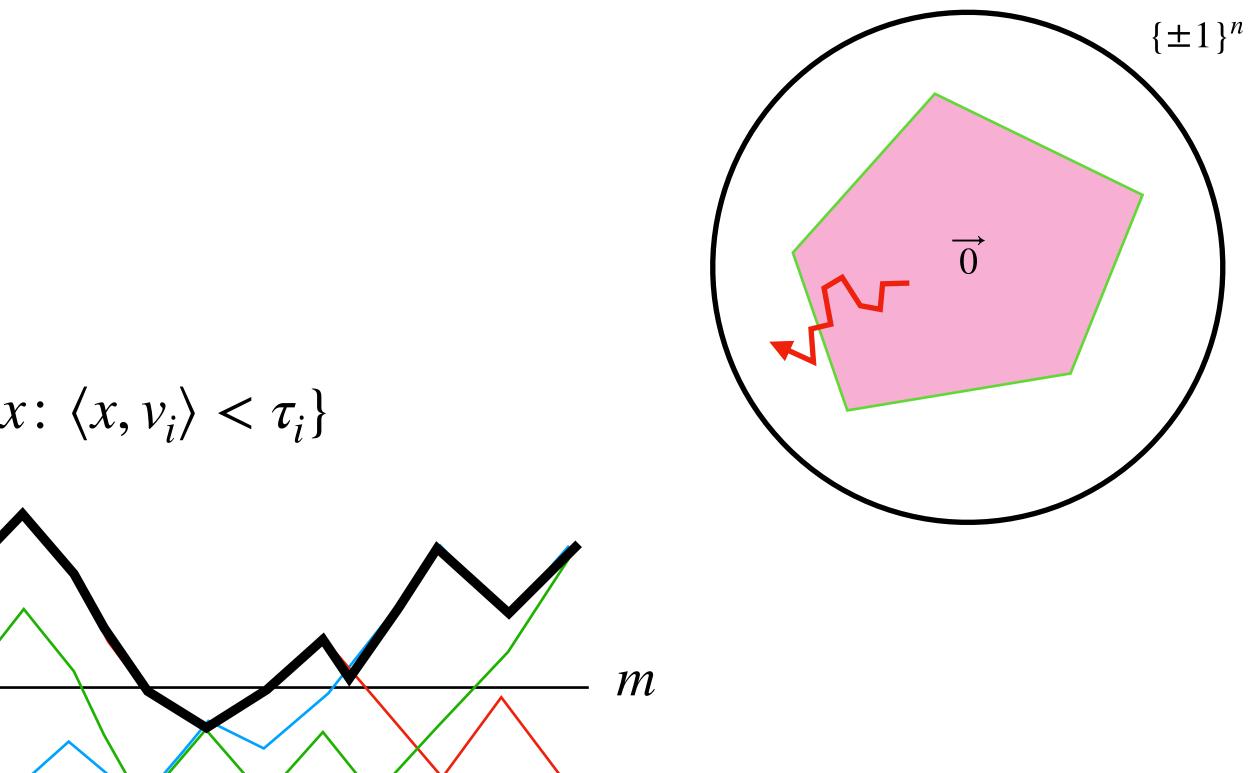
The Max-Walk
Lemma:
$$\mathbb{E}[C] \le O(\sqrt{m})$$

 $S \text{ convex} \implies S = \bigcap_{i=1}^{k} H_i \quad \text{where } H_i = \{x, y_i\} = \{x_i\}$
 $W(t) = \max_{i \in [k]} \langle z^{(t)}, v_i \rangle - \tau_i = 0$

C = # times max walk crosses the origin

Challenges:

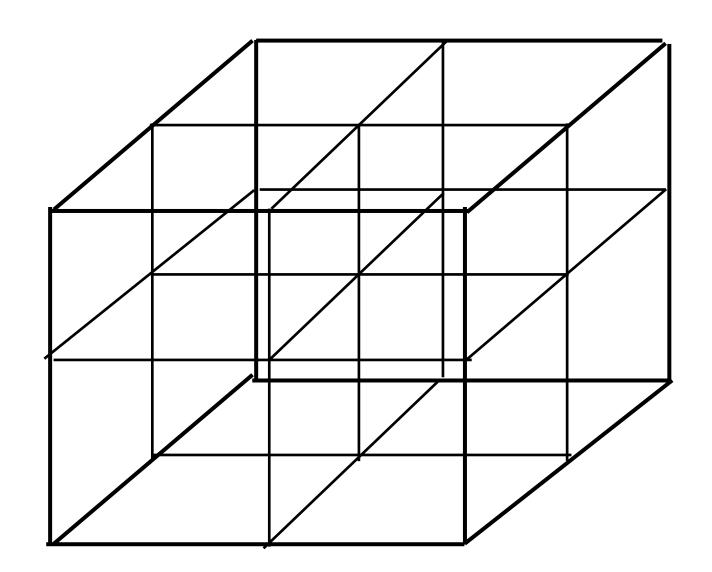
- v_i 's can be arbitrary vectors in \mathbb{R}^n
- Analyzing max-walk for arbitrary real vectors is tricky



Key tool: Sparre Andersen's fluctuation theorem [Sparre '54]

Testing with Queries

1-sided non-adaptive **query**-based testing: $2^{\widetilde{\Theta}(n^{1/2})}$



Testing with Queries

Given *S* and $\varepsilon > 0...$ 2. if $\varepsilon(S) > \varepsilon$: reject w.p. > 2/3

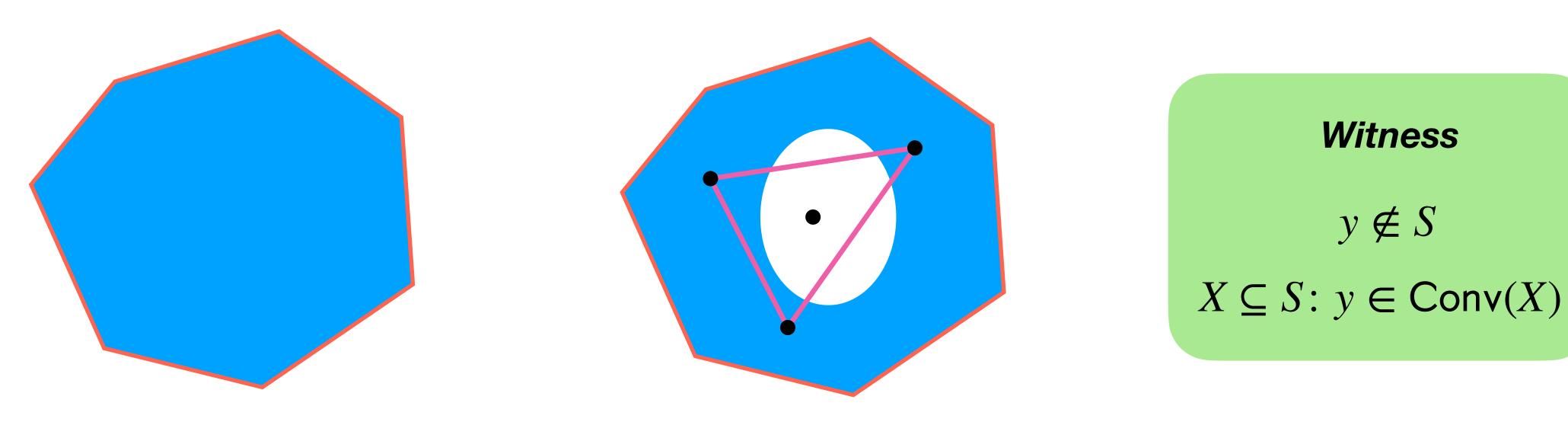
1-sided non-adaptive **query**-based testing: $2^{\Theta(n^{1/2})}$

Testing

1. if *S* convex: **accept** w.p. 1

Testing with Queries

1-sided non-adaptive **query**-based testing: $2^{\Theta(n^{1/2})}$



Always accept

Find a witness of non-convexity with probability > 2/3

How many queries to find a witness when S if ε -far from convex?

Question

Special Structure of $\{0, \pm 1\}^n$

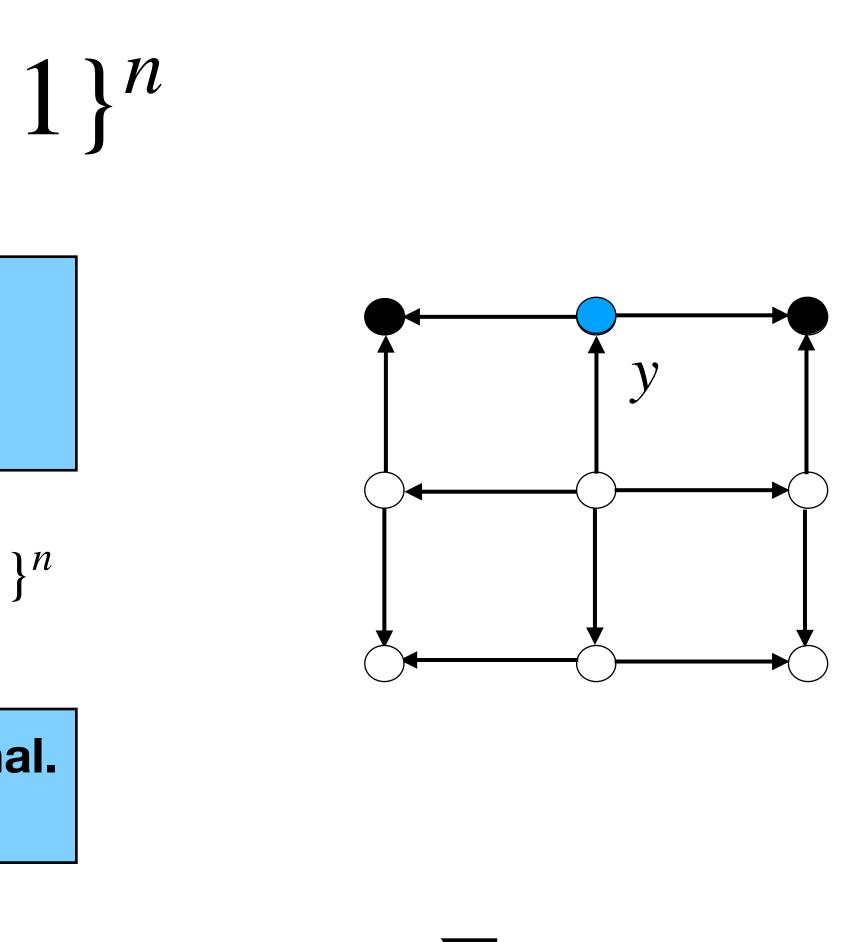
Def: Outward-oriented poset on $\{0, \pm 1\}^n$

$$y \prec x \text{ iff } y_i \neq 0 \implies x_i = y_i$$

Minimal point: $\vec{0}$ Maximal points: $\{\pm 1\}^n$

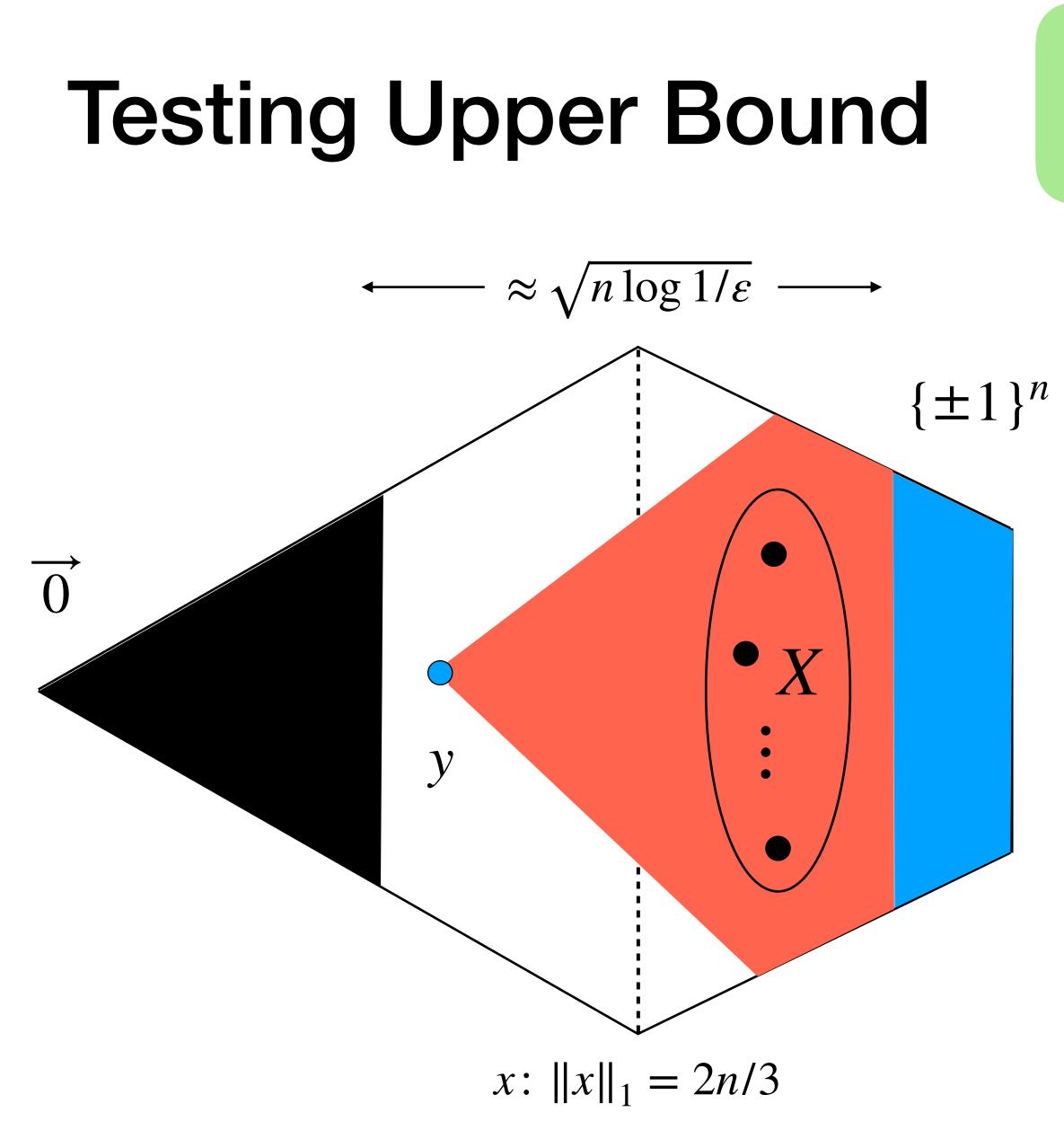
Fact: Suppose $y \in Conv(X)$ and X is **minimal.** Then $y \prec x$ for all $x \in X$

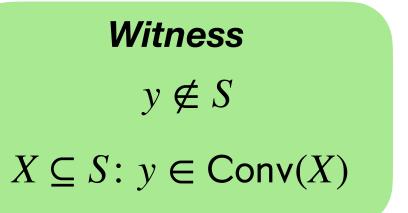
Proof:
$$y = \sum_{x \in X} \lambda_x x$$
Suppose y_i $X minimal \Longrightarrow \lambda_x > 0$ for all x If $x_i \neq y_i$ for some x , then $\sum_{x \in X} \lambda_x x_i$



= 1... *i.e.*, $\sum \lambda_x x_i = 1$ *x*∈*X*

 $x_i < 1$. Contradiction.





Fact: Suppose $y \in Conv(X)$ and X is **minimal**. Then $y \prec x$ for all $x \in X$

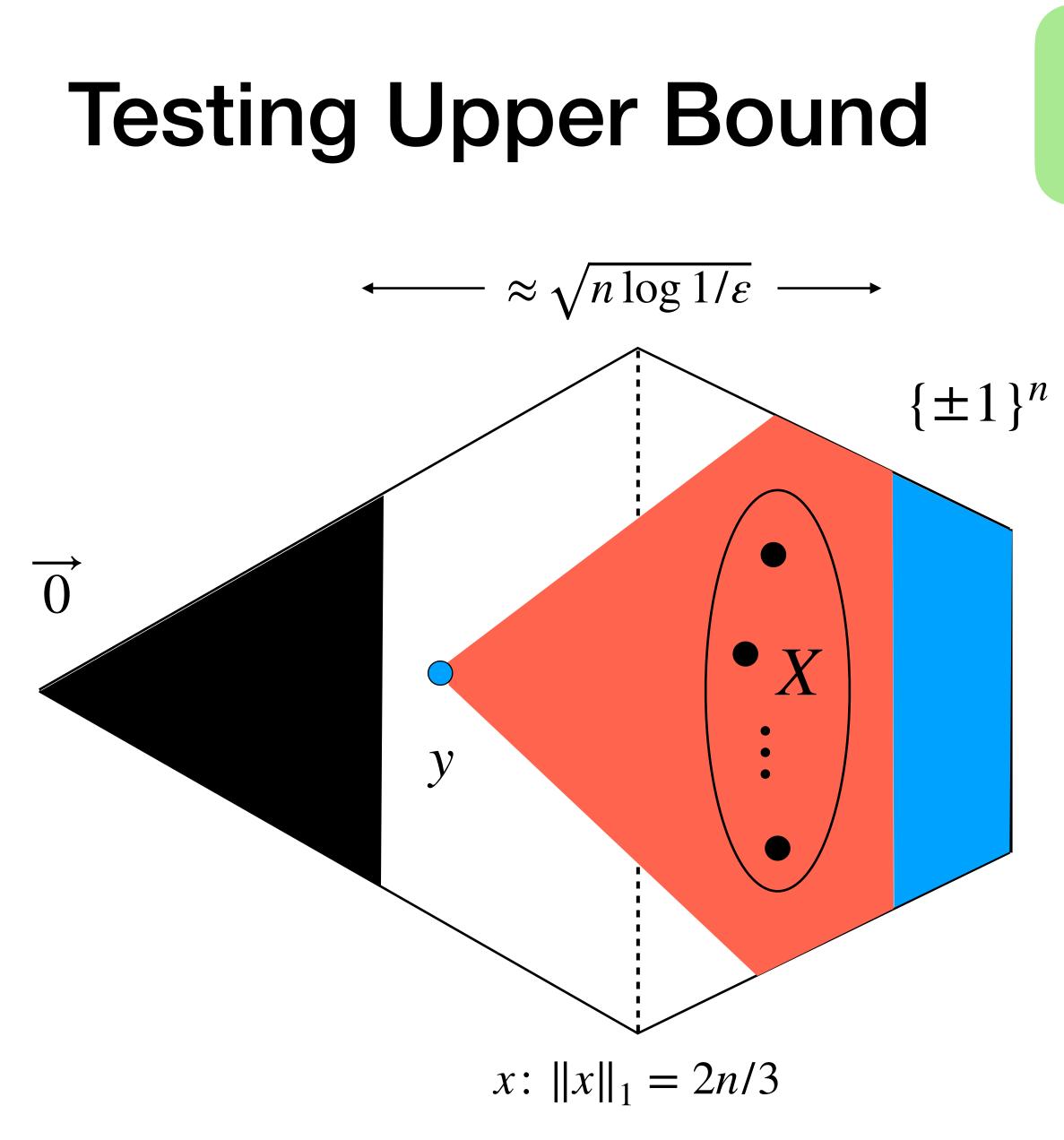
$3^{-n} |\operatorname{Conv}(S) \setminus S| \ge \varepsilon(S) > \varepsilon$ \implies $\Pr_{v}[y \in \operatorname{Conv}(S) \setminus S] \ge \varepsilon$

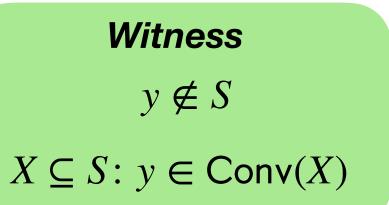
If we can find $X \subset S$ such that $y \in Conv(X)$, then we win

Obs 1: By Fact, \exists such an *X* where $y \prec x \forall x \in X$

Obs 2: By concentration bounds, it suffices to query only *x* such that $\|x\|_1 \le 2n/3 + O(\sqrt{n\log 1/\varepsilon})$

of points satisfying (1) and (2) $\sqrt{n\log 1/\varepsilon}$ $\begin{pmatrix} \#i \colon y_i = 0 \\ \ell \end{pmatrix} \cdot 2^{\ell} \leq 2^{\widetilde{O}(\sqrt{n \log 1/\varepsilon})}$





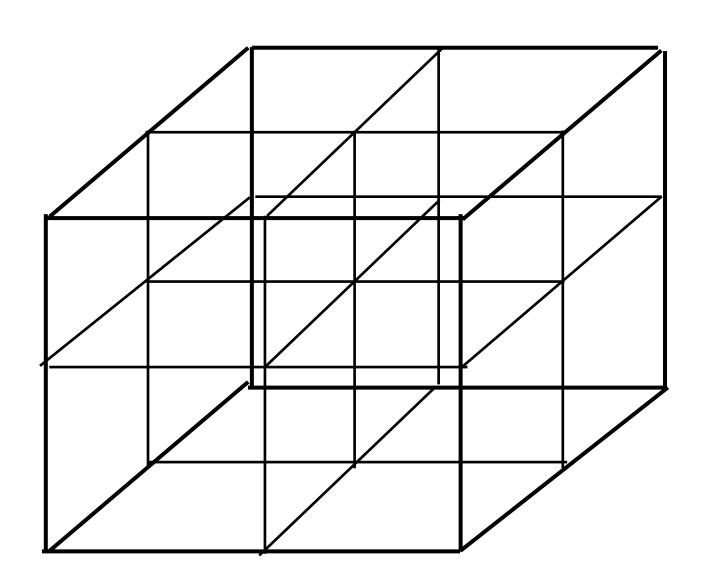
Fact: Suppose $y \in Conv(X)$ and X is minimal. Then $y \prec x$ for all $x \in X$

Tester

Repeat $O(1/\varepsilon)$ **times:**

- Query $y \in \{0, \pm 1\}^n$ uniformly at random
- If $||y||_1 > 2n/3 \widetilde{O}(\sqrt{n})$, then query all of $U_y = \{x > y : ||x||_1 \le 2n/3 + \widetilde{O}(\sqrt{n})\}$
- If $y \notin S$ and there exists $X \subset U_y \cap S$ such that $y \in Conv(X)$, then **reject**

1-sided non-adaptive **query**-based testing: $2^{\Omega(n^{1/2})}$



Proof Sketch

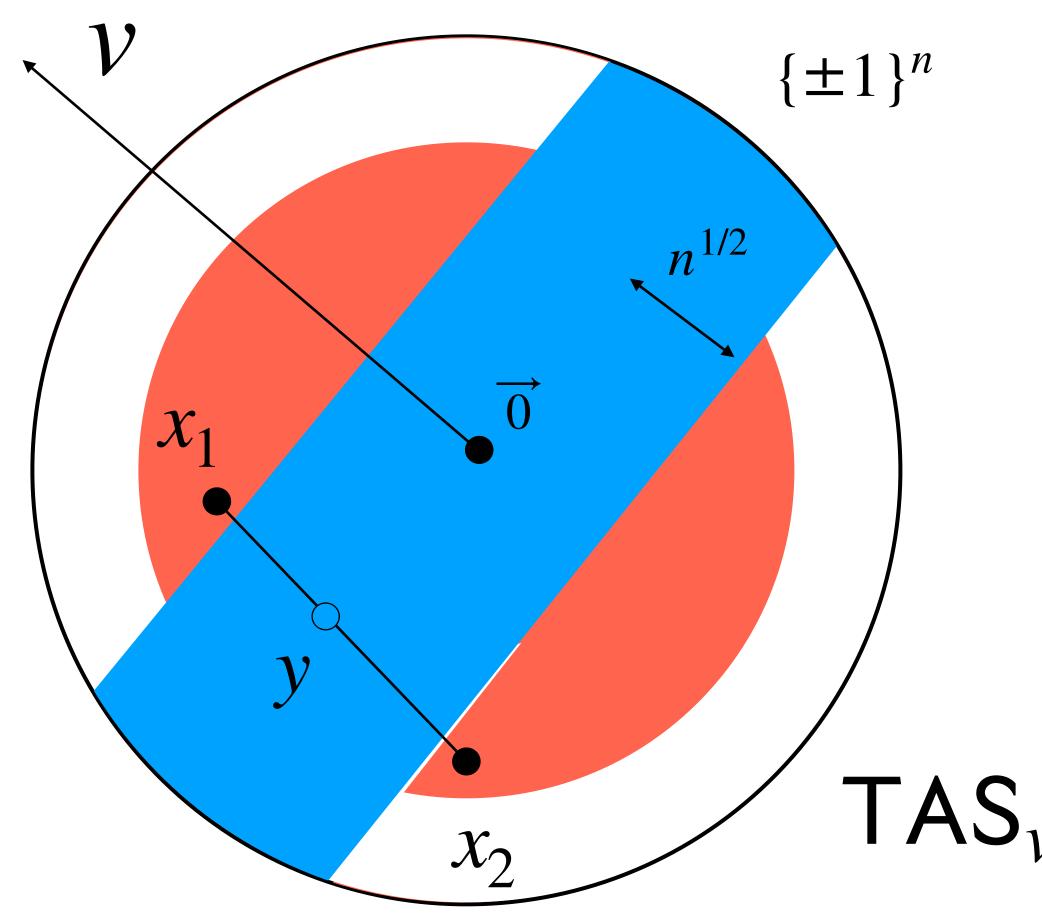
Hard Family of Sets: Truncated Anti-Slabs

Def: Given
$$v \in \{\pm 1\}^n$$
, let
Slab_v = $\{x: |\langle x, v \rangle | < n^{1/2}\}$

$$\mathsf{TAS}_{v} = \overline{\mathsf{Slab}_{v}} \cup \left\{ x \colon \|x\|_{1} < \frac{2n}{3} - 0.6n^{1/2} \right\}$$
$$\setminus \left\{ x \colon \|x\|_{1} > \frac{2n}{3} + 0.6n^{1/2} \right\}$$

Fact: $\varepsilon(TAS_v) = \Omega(1)$

$$\exists x \in \{x_1, x_2\}:$$
(A) $|\langle x - y, v \rangle| > n^{1/2}$
(B) $y \prec x \implies ||x - y||_1 < 1.2n^{1/2}$





Witnesses of Non-Convexity

Let T be a 1-sided non-adaptive tester

- Query set: $Q \subset \{0, \pm 1\}^n$
- *T* rejects $\mathsf{TAS}_v \implies \exists x, y \in Q$

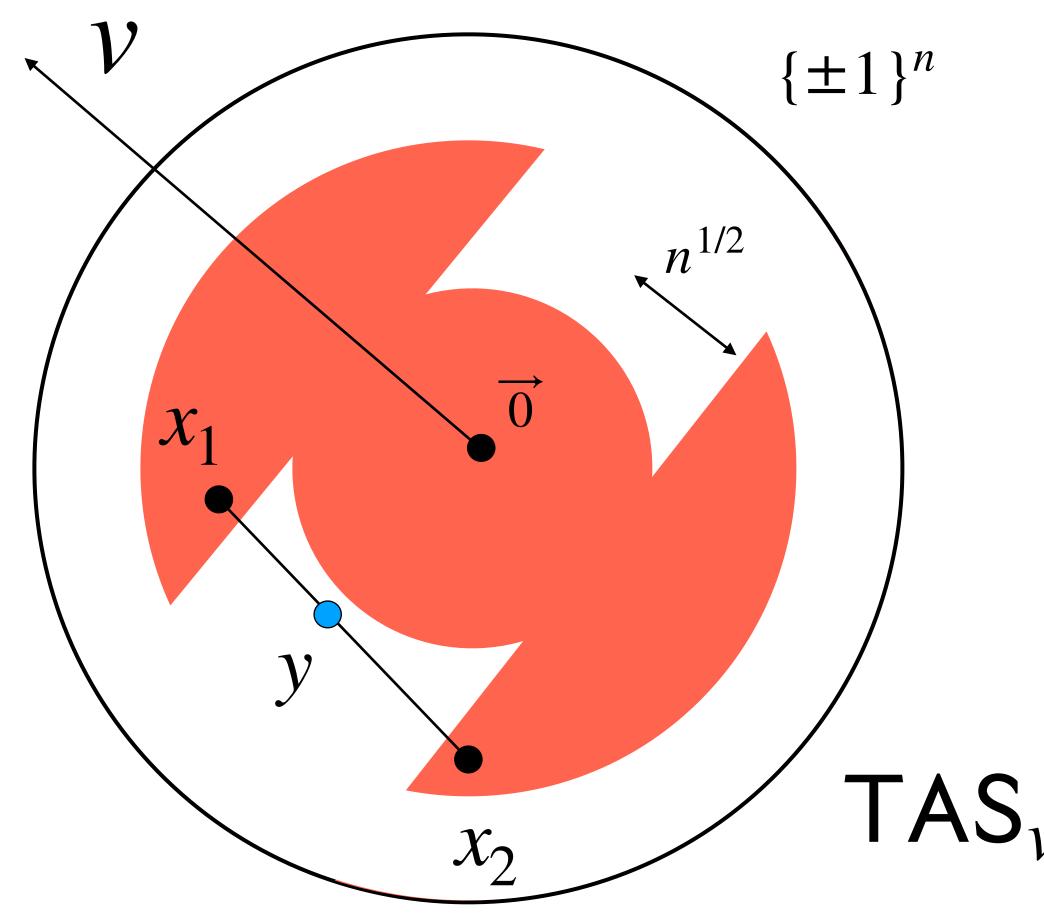
(A)
$$|\langle x - y, v \rangle| > n^{1/2}$$

(B) $||x - y||_1 < 1.2n^{1/2}$

Question:

If **(B)** holds for *x*, *y*, then for how many $v \in \{\pm 1\}^n$ can (A) hold?

> Answer: at most $2^{n-0.08n^{1/2}}$





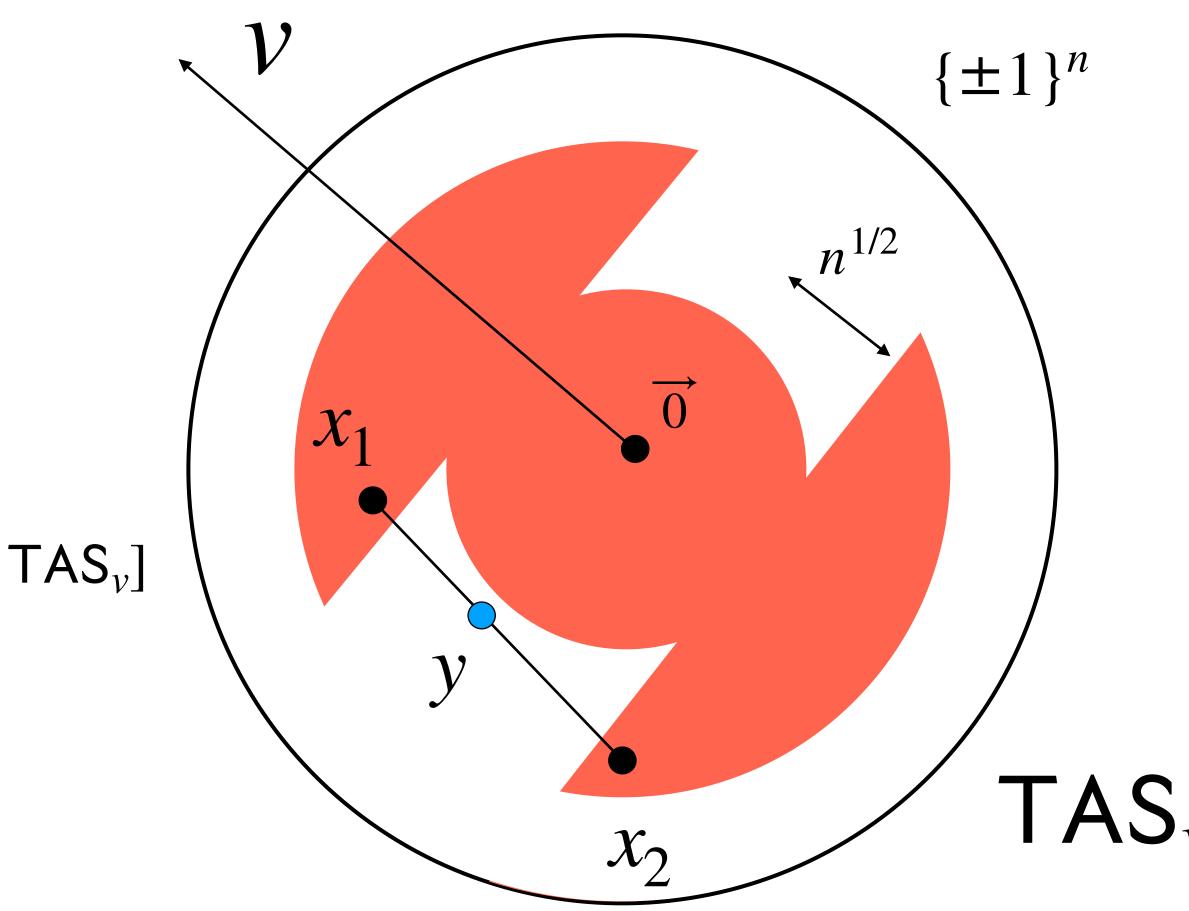
Lower Bound Proof

Let T be a 1-sided non-adaptive tester

 $w(Q) = \# v : Q \text{ witnesses non-convexity of TAS}_{v}$ $\leq \|Q\|^{2} \cdot 2^{n-0.08n^{1/2}}$

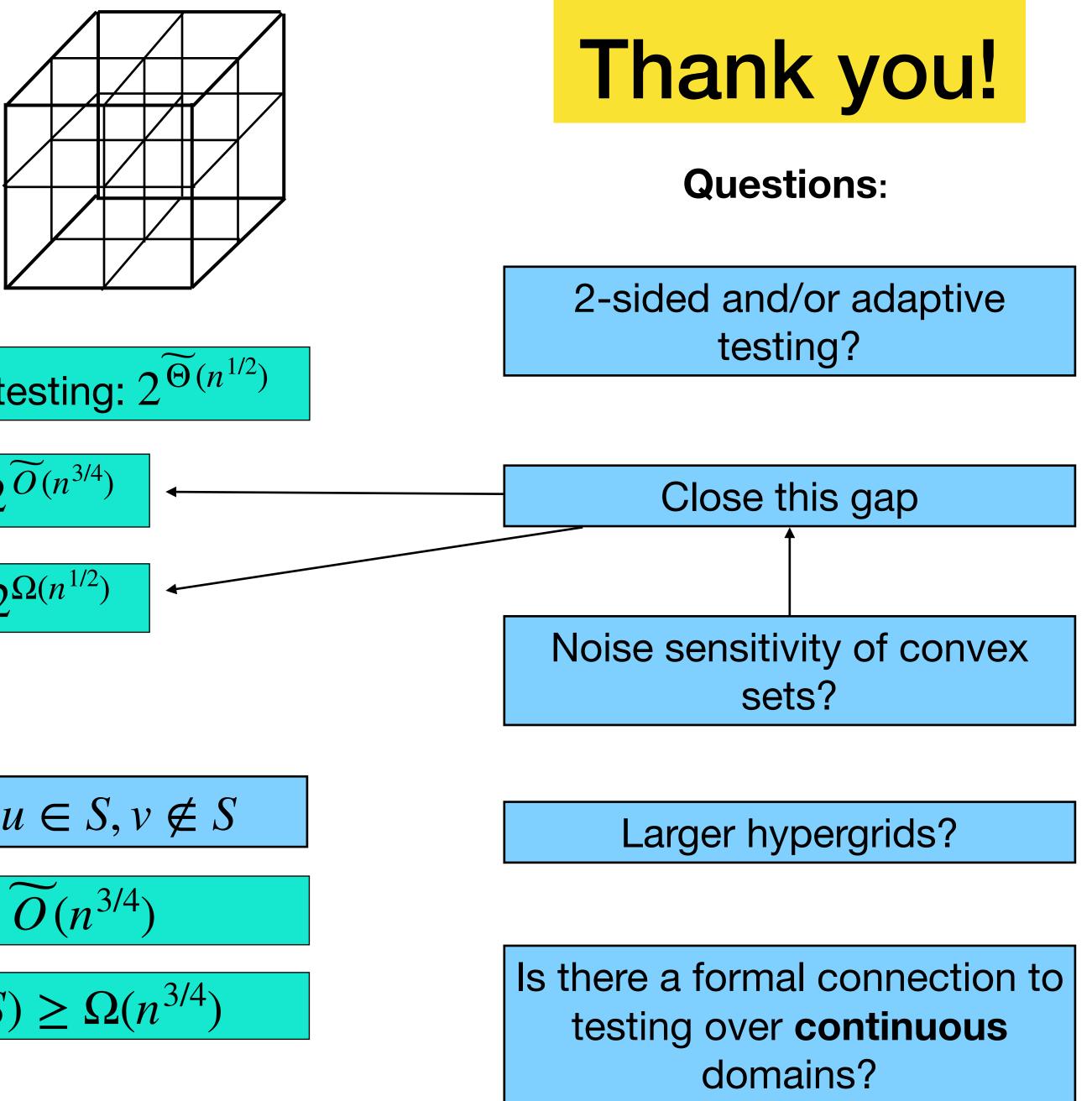
 $\frac{2}{3} \cdot 2^{n} \leq \sum_{\nu \in \{\pm 1\}^{n}} \mathbb{P}_{Q}[T \text{ rejects } \mathsf{TAS}_{\nu}]$ $\leq \sum_{\nu \in \{\pm 1\}^{n}} \mathbb{P}_{Q}[T \text{ contains a witness for } \mathsf{TAS}_{\nu}]$ $= \mathbb{E}_{Q}[w(Q)] \leq |Q|^{2} \cdot 2^{n-0.08n^{1/2}}$

 $\implies |Q| > 2^{0.03n^{1/2}}$



Future Directions

Black-Blais-Harms **[ITCS 24]**



Computational:

Learning and testing with samples: $2^{\Omega(n^{1/2})}$

Structural:

