Directed Isoperimetric Inequalities for
Boolean Functions on the Hypergrid and an

5(11\51) Monotonicity Tester

Hadley Black D. Chakrabarty C. Seshadhri
UCLA Dartmouth UCSC




Monotonicity Testing

A central problem in property testing proposed by
Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 99

We consider Boolean functions over the hypergrid, 1 (n]¢ - {0,1)

fis monotone if f(x) < f(y) whenever x <y

Partial order on [n]% x < yiffx;, <y, Vi € [d]
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Distance to monotonicity:

e(f)=n"¢ min  #x: f(x) # h(x)

h monotone




Monotonicity Testing

A central problem in property testing

Given f: [n]¢ — {0,1}and € > O...

1
1. if fmonotone: accept w.p. >2/3—
2. ife(f) > e reject w.p. > 2/3

query model:

can request f(x) for any element x € [n]*

non-adaptive: tester specifies all queries up front

1-sided error: always accept a monotone function




Testing Boolean Functions

Most well-studied setting: n = 2

f: {0,1}¢ = {0,1)

000

Poset = the directed hypercube
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The Hypercube and Isoperimetry
(for brevity let € = €2(1))

- Testing results for f: {0,1}¢ — {0,1}

 Goldreich, Goldwasser, Lehman, Ron, Samorodnltsky“

* Chakrabarty Seshadhn ‘
e Chen Servedio Tan 14: 0(d5/6)

« Khot Minzer Safra 15: O(dl/z)

Lower bound:
Chen, Waingarten, Xie 17:

° E(d 1/2) for non-adaptive
e Q(d"3) for adaptive
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key Insight: connection
to isoperimetry on the
hypercube
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Testing Results for General n

 Dodis Goldreich Lehman Raskhodnikova Ron
Samorodnitsky 00: O(d log n)

« Berman Raskhodnikova Yaroslavtsev 14: O(d log d)

Black Chakrabarty Seshadhri SODA 18, SODA 20: O (d°/6)

Black Chakrabarty Seshadhri STOC 23: 5(nd 172y

Optimal in d Wasn’t known even forn = 3

e \We extend the isoperimetric theorem by KMS [15] to all n
e Old proofs are highly specialized to the n = 2 case

Parallel work:

 Braverman, Khot, Kindler, Minzer ITCS 23: 5(n3d 1/2)

 completely different techniques



Monotonicity Testing and
Isoperimetry

e Strategy: try to find two points x < y
where f(x) = 1 and f(y) =0

e |f you find such a pair, then reject.

® Otherwise, accept.

® \Vant to find a pair of comparable points
X < y which straddle the upper boundary
of the set {x: f(x) = 1}




Testing and Isoperimetry over {0,1}¢

Edge tester [GGLRS ’'99]

e Sample an edge (x, y) in the hypercube uar.

e Reject if (x,y) is a violation. (f(x) > f(y))

What is the probability that this test finds a violation?

Negative influence Total influence
I7(x) = #edges (x,)): f(x) > f(y) | I{(x) = #edges (x,y): f(x) # f()
I7 = EllF ()] Iy = E[L()]

Theorem: (GGLRS [99)]) [ > Q(e(f)) Theorem: (Poincaré) I, > L2(var(f))

—> # violated edges > Q(e(f)) - 2¢

1 Ad-l Question:
Total # edgesis d - 2 s this analysis
—> Edge test succeeds with probability Q(e/d) of the e(_jge
tester optimal?

—> Repeating O(d/¢) times yields a tester!



Limits of the edge tester

Theorem: GGLRS [99] I > Q(e(f))

Is this inequality tight? Yes.

 To beat O(d) requires something anti-dictator function: f(x) = 1 — x;
other than the edge tester

Path tester (informal):

e Sample x uniformly

e Obtain y by an directed random walk of
length =~ d/* from x

e Reject if f(x) > f(y)

e(f)=1/2and I = 1/2

e Succeeds with probability Q(d~!?)
for the anti-dictator function

e Why? Question:
y Is there a more nuanced way to
e Intuition: edge violations are understand boundary that can
spread amongst the vertices capture this intuition?




A Nuanced Way of Capturing Boundary

Example 1: anti-dictator Example 2: anti-majority
e(f)=1/2and I = O(1) e(f)=1/2and I; = Q(d"?)
x: x| >d/2
0
x:x =1 : ‘fo
1
x: x| <dl2
amongst many vertices E[ If_(x) 1/2] = O(1) concentrated on few vertices

Desired tradeoff
A) There are many edge violations or
B) All edge violations are spread amongst the vertices

Theorem: (KMS [15]): [E[If_(x)l/z] = 5(8( 1)) : Can test with 5(61’ 12y queries
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Directed Isoperimetry — Testers

Undirected isoperimetric inequality Directed isoperimetric inequality Monotonicity Tester

Poincaré GGLRS [99] for n = 2
DGLRRS [99] forn > 2 O(d)
I = Q(var(f)) I = Q(e(f))
Margulis [74] CS[14] forn =2 5( d5/6)
BCS [18] forn > 2 CST [14], BCS [18,20]

Talagand [93] KMS [15] forn = 2 —

[E[If(x)l/ ] = Q(var(f)) Bl ()] = 2(%) 0 (\/ZZ)
/

log d removed by
by Pallavoor, Raskhodnikova, Waingarten [20]

Our contribution:

We generalize Khot-Minzer- : Obtain a a(n\/c_i) query

Safra’s inequality to all n > 2 monotonicity tester iy




Our Isoperimetric
Theorem for Hypergrids



New notion of boundary
Thresholded Influence

Terminology: Given f: [n]¢ — {0,1} an i-violation is a pair (x, y)
which differ only in coordinate i and violate monotonicity of f.

T~

Jx) =1

Defn: [Thresholded Influence] Given f: [n]¢ — {0,1} and x € [n],

fy) =0

CI)f(x) = #i € [d]: x is the lower endpoint of an i-violation

1, 90 90
i 1o g
(Df(x) %
1 1 1
0" 1 1
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Directed Talagrand on [n]¢

Defn: [Thresholded Influence] Given f: [n]¢ — {0,1} and x € [n]¢,

CI)f(x) = #i € [d]: x is the lower endpoint of an i-violation

Theorem: (BCS [23]) Forany f: n]¢ - {0,1},

[E[(I)f(X)l/2] —0 ( 8(f) )
log n

e Whenn =2, ®y(x) = I (x)
e (Generalizes the inequality of KMS [15] to any n

e BKKM [23] prove the same inequality, but with poly(n) in
the denominator of the RHS

14



Robust Directed Talagrand on (n]?

Let E denote the set of pairs (x, y) which differ in exactly one coordinate

Defn: [Colorful Influence] Given f: [1]¢ — {0,1}, : E — {0,1}, and x € [n]¢,

O, (X) =#i € [d]: x participates in an i-violation (x, y) where y(x,y) = f(x).

Theorem: (BCS [23]) For any f: [1n]¢ — {0,1} and y: E — {0,1}

E[D,,(x)] = Q (logn>

e [KMS15] proved this inequality for n = 2
* Robustness makes the proofs much more challenging

Theorem: (BCS [23]) There is aa(n\/z’) query monotonicity tester.

e Optimal dependence on d comes from our isoperimetric inequality

e Suboptimal dependence on n: underlying graph has degree n in each dimension
15



Proof ideas

Theorem: (BCS [23]) For any f: [n]¢ — {0,1},

- | 2] _ e(f ))
_CDf(x) | = §) <logn




ldea 1: tracking the effects of sorting

Defn: [Sort operator] Given f: [n]¢ - {0,1} and S C [d]:
e S o f = function obtained by sorting f on each coordinate in §
(in increasing order)

Defn: [Tracker functions] Given f: [n]¢ — {0,1} and x € [n]¢ define

ge: 219 > {0,1} as g(S) = S« f(x).
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Tracking the effects of sorting

Defn: [Sort operator] Given f: [n]¢ = {0,1} and S C [d]:
e S o f = function obtained by sorting f on each coordinate in §
(in increasing order)

Defn: [Tracker functions] Given f: (n]¢ — {0,1} and x € [n]¢ define

g.: 2l 5 10,1} as g2.(8) =S of(x).

Main inequality
E[@(%)"?] > EyepueEscialle ()]

/ N\

Directed boundary of f Average undirected boundary of g.'s

Can leverage undirected Talagrand on the hypercube to bound RHS
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Proof big picture

1. Connecting to the tracker functions “If f is semi-sorted
(by Talagrand [93])

F[D(x)] > E(EglI, ()] > C - F [var(g)]

Proof strategy:
e A “hybrid argument” which transforms the LHS into the RHS in d steps

e Inspired by the split operator of KMS [15]

e Unclear how to generalize the split operator to hypergrids
e QOur key tool: vector majorization

2. Reduction to semi-sorted functions

Defn: f: [n]¢ — {0,1)} is semi-sorted if fis monotone in every orthant.

Remark: All functions f: {0,1}¢ — {0,1} are semi-sorted.

3. Connecting E [var(g,)] back to &(f)

e Proof is similar to arguments in KMS [15] and PRW [20] 19



Summary

* \We generalize the directed Talagrand inequality of Khot-Minzer-Safra
to the hypergrid [1n]?

e Obtain a monotonicity tester making a(n\/;l) queries

» First achieving y/d forany n > 2 (alongside parallel work of BKKM [23])

e Yes! (nearly) Our recent follow up work achieves d 1/2+o(l) queries

e Analysis relies on our directed Talagrand inequality over (n]¢

e Resolves non-adaptive Boolean monotonicity testing (nearly) for all n

e Current lower bound is a(dm) by Chen-Waingarten-Xie [17]
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Thank you!



