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Monotonicity Testing

• We consider f : [n]d → {0,1}

•  is monotone if  whenever f f(x) ≤ f(y) x ≺ y
ε( f ) = n−d ⋅ min

h monotone
 # x : f(x) ≠ h(x)

Distance to monotonicity:

A central problem in property testing 
proposed by Goldreich-Goldwasser-

Lehman-Ron-Samorodnitsky 99

• Partial order:  iff x ⪯ y xi ≤ yi, ∀i ∈ [d]

2

Given  and …f : [n]d → {0,1} ε > 0
1. if  monotone:     accept w.p. 

2. if :         reject  w.p. 

f > 2/3
ε( f ) > ε > 2/3

* Non-adaptive queries

monoε
f
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Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 
99 and Berman-Raskhodnikova-Yaroslavtsev 14

Black-Chakrabarty-Seshadhri SODA 18, 20

Abridged History of Non-adaptive Testing (for brevity let )ε = Ω(1)

Braverman-Khot-Kindler-Minzer ITCS 23,

Black-Chakrabarty-Seshadhri STOC 23

Black-Chakrabarty-Seshadhri FOCS 23

The Hypercube ( )n = 2

The Hypergrid ( )n ≥ 2

Õ (d)

Khot-Minzer-Safra 

FOCS 15 Õ (d1/2) Chen-Waingarten-Xie 


STOC 17 Ω̃ (d1/2)

Õ (d5/6)

Õ (poly(n) ⋅ d1/2)

d1/2+o(1)
⋯

⋯

⋱

≈
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The Hypercube:  
a (very) brief history

(0,0,0)

(1,1,1)
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Edge tester (GGLRS [99])

f = 1

f = 0

Theorem: (GGLRS [99]) I−
f ≥ Ω(ε( f ))

Total # edges is d ⋅ 2d−1

 Edge test succeeds with probability ⟹ Ω(ε/d)

 Repeat  times!⟹ O(d/ε)

• Sample an edge (x, y)

• Reject if .f(x) > f(y)

How many decreasing edges are there when ?ε( f ) > ε

Question:  
Is this a tight 

analysis of the 
edge tester?

  # decreasing edges  ⟹ ≥ Ω(ε( f )) ⋅ 2d

Negative influence 

I−
f =

# edges (x, y) : f(x) > f(y)
2d

Theorem: (Poincaré) If ≥ Ω(var( f ))

Total influence 

If =
# edges (x, y) : f(x) ≠ f(y)

2d

The Edge Tester
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• We succeed with probability  
for the anti-dictator function

Ω(d−1/2)

Is this inequality tight?Theorem: GGLRS [99] I−
f ≥ Ω(ε( f )) Yes.

• To beat  requires something 
other than the edge tester

O(d)

Path tester (CS [14])

• Sample  which differ on  bitsx ≺ y ≈ d1/2

• Reject if f(x) > f(y)

• Why? Decreasing edges are 
spread amongst the vertices

ε( f ) = 1/2 and I−
f = 1/2

x : x1 = 0

x : x1 = 1

1

0

anti-dictator function: f(x) = 1 − x1

The Path Tester

Theorem: KMS [15] 
𝔼x[I−

f (x)1/2] = Ω̃ (ε( f )) ⟹ Can test with  
queries by combining edge 

tester and path tester

Õ (d1/2)Theorem: Talagrand [93]  
𝔼x[If(x)1/2] = Ω(var( f ))

Question: 
Is there a more nuanced way to 

understand boundary?
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The Hypergrid

(1,1,1)

(n, n, n)

⋯

⋯
⋱

The (fully augmented) hypergrid:

DAG with… 

• Vertex set: [n]d

• Edges:  which differ on 1 
coordinate by any value

(x, y)
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Thresholded Influence:  
Given  and  

there exists a decreasing -edge incident to 

f : [n]d → {0,1} x ∈ [n]d

Φf(x) = #i ∈ [d] : i x

1 0 0

1 1 0

1 1 1

2

1

11

1

0

1

1 1

Φf(x)

f(x) = 1 f(y) = 0

•  When ,  n = 2 Φf(x) = I−
f (x)

Generalizes the directed Talagrand inequality by KMS

The Directed Talagrand Inequality for Hypergrids (STOC 23)

Theorem (BCS STOC 23): For any  ,  f : [n]d → {0,1}

𝔼x[Φf(x)1/2] = Ω ( ε( f )
log n )

⟹

How does this inequality help us analyze monotonicity testers?
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⟹

Good Subgraphs 

E
f = 1 f = 0⋮ ⋮⟹

Good subgraph lemma (KMS 15, informal): 
  

For some , there is bipartite subgraph of decreasing edges 
 with max degree  and

Δ
G(U, V, E) Δ |E | ≥ Ω̃ ( Δ ⋅ nd)

Δ = d |E | ≥ Ω( d ⋅ nd)

Δ = 1 ⟹  and  is a matching|E | ≥ Ω(nd) E

Theorem (BCS STOC 23): For any  ,  f : [n]d → {0,1}

𝔼x[Φf(x)1/2] = Ω ( ε( f )
log n )

(let’s assume )ε( f ) = Ω(1)
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Plan for the Rest of the Talk

Matching assumption:   
 

There is a matching  of  decreasing edges


f : [n]d → {0,1}

E Ω(nd)

1)  An  tester under matching assumptionO(n d)

⟹ Tester analysis

• These techniques are due to KMS 15

2)   Sketch for  tester under matching assumptionO(log n d)

• We may assume  and so n = poly(d) O(log n d) = Õ ( d)
(BCS SODA 20, Harms-Yoshida ICALP 22)
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An  Query TesterO(n d)
Assumption: There is a matching  of  decreasing edgesE Ω(nd)

Def:  is persistent if a random walk 
from  of length  leads to  with 

 with probability 

y ∈ [n]d

y τ − 1 z
f(z) = f(y) ≥ 0.9

Walk distribution 1:

• Sample  u.a.r. and a set  of  random coordinates


• For : set  u.a.r.


• For : set 


x T ⊆ [d] τ ≈ d
i ∈ T yi ∈ [xi, n]
i ∉ T yi = xi

⋮ ⋮E

Lemma (KMS, informal):  
If # decreasing edges , then # non-

persistent points is  
< n d ⋅ nd

o(nd)

⟹ All endpoints of  are persistentE

ℙ[ f(x) = 1 ∧ f(y) = 0]

≥ ∑
(u,u+sei)∈E

≥ Ω(n−1d−1/2)

u v = u + sei
s

f = 0

f = 1 f = 0

ℙ[x = u] ⋅ ℙ[T ∋ i] ⋅ ℙ[yi − xi = s] ⋅ ℙ[ f(y) = 0]

n−d Ω(d−1/2) Ω(n−1) 0.9⏟ ⏟ ⏟ ⏟
End of the story for constant …n What about 

larger ?n
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f = 1 f = 0
u v

Internal Points

• Let interval of points between  and I(u, v) = u v

… let’s assume  is at least half ’s for all I(u, v) 0 (u, v) ∈ E

z
Walk distribution 2:

• Sample  u.a.r. and  of  random coordinates


• For , choose  u.a.r  

• set  u.a.r  

x T ⊆ [d] τ ≈ d
i ∈ T p ∈ [log n]

yi ∈ [xi, xi + 2p]

f = 0

f = ?

≈ log−1 n

But can we argue a random point in  is persistent?I(u, v)

Short answer: No.

 may be very small⋃
(u,v)∈E

I(u, v)∖{u, v}
Walk 2 analysis: condition on passing through u.a.r z ∈ I(u, v)

Assumption: There is a matching  of  decreasing edgesE Ω(nd)
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Red Edges and the Shifted Path Test

Def: Call  mostly-zero-below (mzb) if a -length downward 
random walk from  ends at a  with prob. 
z (τ − 1)

z 0 ≥ 0.9

z

z′ 

Def: Call an edge  red if a -length upward random walk from 
a u.a.r.  ends at  which is mzb with prob. 

(u, v) (τ − 1)
w ∈ I(u, v) z ≥ 0.01 u vw

Recall: All endpoints of  are persistentE
u′ = u − s

= z − s

 is mostly red  E ⟹

What if  is 
mostly not red?

E

Assumption: There is a matching  of  decreasing edgesE Ω(nd)

mzb

1

1 0

0u′ ≺ z′ 

Upward walk + downward shift finds 
a violation with prob. Ω(d−1/2 log−1 n)
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Non-red Edges

u v

Def: Call an edge  red if a -length upward random walk from 
a u.a.r.  ends at  which is mzb with prob. 

(u, v) (τ − 1)
w ∈ I(u, v) z ≥ 0.01

⟹  non-red   mostly-one-below with prob. (u, v) ⟹ z ≥ 0.99

Recall:  are persistentu, v

u′ v′ 

Consider  a random translation of (u′ , v′ ) (u, v)

With high prob. ,  and 
most of  is mostly-one-below

f(u′ ) = 1 f(v′ ) = 0
I(u′ , v′ )

⟹ A downward random walk from  discovers a violation with probability v′ Ω(d−1/2 log−1 n)

z

x

Def: Call an edge  blue if a constant fraction of  is mostly-one-below(u′ , v′ ) I(u′ , v′ )

w

Assumption: There is a matching  of  decreasing edgesE Ω(nd)

⟹
1 0

1

1 0
mob
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Red-blue Win-win Argument

Def: Call an edge  red if a -length upward random walk from 
a u.a.r.  ends at  which is mzb with prob. 

(u, v) (τ − 1)
w ∈ I(u, v) z ≥ 0.01

Def: Call an edge  blue if a constant fraction of  is mob(u′ , v′ ) I(u′ , v′ )

Case 1:  is mostly redE

 Upward walk + downward shift finds a 
violation with prob. 
⟹

Ω(d−1/2 log−1 n)

⋮ ⋮E

Assumption: There is a matching  of  decreasing edgesE Ω(nd)

z mzb

1

0
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Red-blue Win-win Argument

Def: Call an edge  red if a -length upward random walk from 
a u.a.r.  ends at  which is mzb with prob. 

(u, v) (τ − 1)
w ∈ I(u, v) z ≥ 0.01

Def: Call an edge  blue if a constant fraction of  is mob(u′ , v′ ) I(u′ , v′ )

Case 1:  is mostly redE

 Upward walk + downward shift finds a 
violation with prob. 
⟹

Ω(d−1/2 log−1 n)

Case 2:  is mostly non-redE

 Flow argument: there exists another matching  which is 
mostly blue
⟹ E′ 

 Downward walk finds a violation with prob. ⟹ Ω(d−1/2 log−1 n)

⋮ ⋮E

⋮ ⋮E′ 

Assumption: There is a matching  of  decreasing edgesE Ω(nd)
z mob

1

0
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Summary BCS FOCS 23 

There is a  query 
monotonicity tester for functions 

ε−2d1/2+o(1)

f : [n]d → {0,1}

 Resolves the nonadaptive 
monotonicity testing problem
≈

BCS STOC 23 

Directed Talagrand inequality 
for hypergrids

BCS FOCS 23 

Translating good 
subgraphs

Open question:

Adaptive monotonicity testing?

Chen-Waingarten-Xie 17

 Ω̃ (d1/3)

Khot-Minzer-Safra 15

 Õ (d1/2)

?

+
BCS SODA 20 

Domain reduction for 
hypergrids

+


