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M()n()t()nicity Testing A central problem in property testing

proposed by Goldreich-Goldwasser-
Lehman-Ron-Samorodnitsky 99

e We consider f: [n]¢ — {0,1)}

Distance to monotonicity:

| e(f)=n"¢  min  #x: f(x) # hx)
o Partial order: x < yiffx; <y, Vi € [d] h monotone

e fis monotone if f(x) < f(y) whenever x <y

* Non-adaptive queries



Abrldged Hlstory of Non-adaptive Testing (for brevity let € = (1))
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The Hypercube:
a (very) brief history
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The Edge Tester

Edge tester (GGLRS [99])
e Sample an edge (x, y)

e Rejectif f(x) > (V).

How many decreasing edges are there when &(f) > £?

Negative influence

—_ #edges (x,3): f(x) > f(¥
;T 2d

Theorem: (GGLRS [99]) I, > Q(e(f))

—> # decreasing edges > Q(e(f)) - 2¢
Total # edges is d - 297!
—> Edge test succeeds with probability €2(e/d)

—> Repeat O(d/¢€) times!

Total influence

7. _ ¥#edges (x, ¥): f(x) # f(y)
;T Nd

Theorem: (Poincaré) I, > L2(var(f))

Question:
Is this a tight
analysis of the
edge tester?




The Path Tester

Theorem: GGLRS [99] /i~ > Q(e(f)) Is this inequality tight? Yes.

+ To beat O(d) requires something anti-dictator function: f(x) = 1 — x;,

other than the edge tester &( f) — 1/2 and ]f— =1/2

Path tester (CS [14])

e Sample x < y which differ on ~ d'/? bits

e Reject if f(x) > f(V)

e We succeed with probability Q(d~"?) e Why? Decreasing edges are Question:
for the anti-dictator function spread amongst the vertices Is there a more nuanced way to
understand boundary?

Theorem: Talagrand [93] Theorem: KMS [15] Can test with .O.(d 12y
_x[lf(x)l/z] = Q(var(f)) _x[lf—(x)l/z] = Q(e(f)) : queries by combining edge
tester and path tester




The Hypergrid

The (fully augmented) hypergrid:

DAG with...

e \Vertex set: [n]?

e Edges: (x, y) which differ on 1

// / coordinate by any value

ANEAN

(1,1,1)



The Directed Talagrand Inequality for Hypergrids (STOC 23)

Thresholded Influence: / \
Given f: [n]d — {0,1} and x € [n]d °
fx)=1 JO) =0
O(x) = #i € [d]: there exists a decreasing i-edge incident to x
|1 0 1 0 |
Theorem (BCS STOC 23): For any f: (n]¢ — 0,1}, o () o®
= D02 = O g(f)) 1] 1] 2 0| 1
x[ f(x) | (logn Cz {H ’Q (I)f(X)
1 § 1 . 1

e Whenn = 2, (Df(x) = If_(x) 0 - - | Ol

——> Generalizes the directed Talagrand inequality by KMS

How does this inequality help us analyze monotonicity testers?



Good Subgraphs (let’s assume &(f) = €2(1))

Theorem (BCS STOC 23): For any f: [n]¢ — {0,1},

10,0 =0 (1) -
log n W

Good subgraph lemma (KMS 15, informal): f — 1

; For some A, there is bipartite subgraph of decreasing edges '
G(U, V, E) with max degree A and |E| > Q (/A - n%) \J

A=d = |E|>QHd- n9

>
1

| — | E| > Q(n?) and E is a matching

0



Plan for the Rest of the Talk

Matching assumption:
f: [n]1* = {0,1}
—> lester analysis

There is a matching E of Q(n¢) decreasing edges

1) An O(n\/c_i) tester under matching assumption

e These techniques are due to KMS 15

2) Sketch for O(log n\/c_l) tester under matching assumption

e We may assume n = poly(d) and so O(log n\/c_i) = 5(\/6_1’)
(BCS SODA 20, Harms-Yoshida ICALP 22)
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An O(n\/d) Query Tester /

Assumption: There is a matching E of Q(n%) decreasing edges

Walk distribution 1: f il/\sf: 0
u ~ Vv =u-+se;

e Sample xu.a.rrandaset7T C [d]of T & \/c_z’ random coordinates

0

e Fori & T:sety, = x,

Def: y € [n]? is persistent if a random walk

from y of length 7 — 1 leads to z with |]2D[f(x) — 1 A f()’) — O]
f(z) = f(y) with probability > 0.9

> Y Plx=ul-P[T3i][Ply-x = s \Pf(y) = 0]

Lemma (KMS, informal): : ,
If # decreasing edges < n\/c_z’ - nd, then # non- (wu+se) Sk _d

persistent points is o(n?)

> Q(n_ld_l/z)

——> All endpoints of E are persistent What about
End of the story for constant n...
larger n? 11



Internal Points

Assumption: There is a matching E of Q(n%) decreasing edges

e Let I(u,Vv) = interval of points between u and v

... let’s assume I(u, v) is at least half O’s for all (u,v) € E

Walk distribution 2:
e Samplexu.arrand T C [d] of T & \/c_i random coordinates

» Fori € T, choose p € [logn] u.a.r But can we argue a random point in I(u, v) is persistent?

e sety; € [x;,x; + 2] u.ar
Short answer: No.

U I(u, v)\{u, v}

Walk 2 analysis: condition on passing through u.a.r z € I(u,v) (uv)EE

~ log™ ' n

may be very small

12



Red Edges and the Shifted Path Test

Assumption: There is a matching £ of Q(nd) decreasing edges

Z mzb

Def: Call z mostly-zero-below (mzb) if a (z — 1)-length downward
random walk from z ends at a 0 with prob. > 0.9

Recall: All endpoints of £ are persistent

E is mostly red — Upward walk + downward shift finds
a violation with prob. Q(d~*1log™! n)

What if E is
mostly not red?

13



Non-red Edges

Assumption: There is a matching £ of Q(nd) decreasing edges

——> (u,v) non-red = z mostly-one-below with prob. > 0.99

Recall: u, v are persistent

Consider (¢’, v') a random translation of (u, v)

——> With high prob. f(1) = 1, f(v') = 0 and

most of I(u’, V') is mostly-one-below

——> A downward random walk from Vv’ discovers a violation with probability Q(d~*log™! n)

14



Red-blue Win-win Argument

Assumption: There is a matching £ of Q(nd) decreasing edges

Case 1: E is mostly red

—> Upward walk + downward shift finds a
violation with prob. Q(d~?1log™! n)

15



Red-blue Win-win Argument

Assumption: There is a matching £ of Q(nd) decreasing edges

Case 1: E is mostly red

—> Upward walk + downward shift finds a
violation with prob. Q(d~?1log™! n)

Case 2: E is mostly non-red

—> Flow argument: there exists another matching £’ which is
mostly blue

— Downward walk finds a violation with prob. Q(d~"?1log™'n) [ ]

16



~ Resolves the nonadaptive

query monotonicity testing problem

BCS FOCS 23
Summary
There is a e ~2d!/?+o()
monotonicity tester for functions
f: [n]* = {0,1}
BCS FOCS 23 BCS STOC 23
Translating good * | Directed Talagrand inequality T
subgraphs for hypergrids

BCS SODA 20

Domain reduction for

hypergrids

Open question:

Adaptive monotonicity testing?

Chen-Waingarten-Xie 17
0 (d1/3)

?
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O( dl/z)
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