A $d^{1/2+o(1)}$ Monotonicity Tester for Boolean Functions on *d*-Dimensional Hypergrids

Hadley Black **UCLA**

FOCS 2023

Deeparnab Chakrabarty Dartmouth

C. Seshadhri UCSC

Monotonicity Testing

- We consider $f: [n]^d \rightarrow \{0,1\}$
- f is monotone if $f(x) \le f(y)$ whenever $x \prec y$
- Partial order: $x \leq y$ iff $x_i \leq y_i, \forall i \in [d]$

Given
$$f: [n]^d \rightarrow \{0,1\}$$
 and $\varepsilon > 0...$
1. if f monotone: **accept** w.p. >
2. if $\varepsilon(f) > \varepsilon$: **reject** w.p. >

* Non-adaptive queries

A central problem in property testing proposed by Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 99

Distance to monotonicity:

$$\varepsilon(f) = n^{-d} \cdot \min_{\substack{h \text{ monotone}}} \# x \colon f(x) \neq h(x)$$

Abridged History of Non-adaptive Testing (for brevity let $\varepsilon = \Omega(1)$)

The Hypercube (n = 2)

Khot-Minzer-Safra $\widetilde{O}(d^{1/2})$ FOCS 15

The **Hypergrid** ($n \ge 2$) $\approx \sqrt{}$

Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 99 and Berman-Raskhodnikova-Yaroslavtsev 14

Black-Chakrabarty-Seshadhri SODA 18, 20

Braverman-Khot-Kindler-Minzer ITCS 23,

Black-Chakrabarty-Seshadhri STOC 23

Black-Chakrabarty-Seshadhri FOCS 23

Chen-Waingarten-Xie STOC 17

$$\widetilde{\Omega}(d^{1/2})$$

O(d)

$$\widetilde{O}(d^{5/6})$$

 $\widetilde{O}(\mathsf{poly}(n) \cdot d^{1/2})$

 $d^{1/2+o(1)}$

3

The Hypercube: a (very) brief history

(0,0,0)

The Edge Tester

Edge tester (GGLRS [99])

- Sample an edge (*x*, *y*)
- Reject if f(x) > f(y).

How many decreasing edges are there when $\varepsilon(f) > \varepsilon$?

Theorem: (GGLRS [99]) $I_f^- \ge \Omega(\varepsilon(f))$

 \implies # decreasing edges $\geq \Omega(\varepsilon(f)) \cdot 2^d$

Total # edges is $d \cdot 2^{d-1}$

 \implies Edge test succeeds with probability $\Omega(\varepsilon/d)$

 \implies Repeat $O(d/\varepsilon)$ times!

Theorem: (Poincaré) $I_f \ge \Omega(var(f))$

Question: Is this a tight analysis of the edge tester?

The Path Tester

Theorem: GGLRS [99] $I_f^- \ge \Omega(\varepsilon(f))$

• To beat O(d) requires something other than the edge tester

Path tester (CS [14])

- Sample $x \prec y$ which differ on $\approx d^{1/2}$ bits
- Reject if f(x) > f(y)
- We succeed with probability $\Omega(d^{-1/2})$ Why? for the anti-dictator function **spread**

Theorem: Talagrand [93] $\mathbb{E}_{x}[I_{f}(x)^{1/2}] = \Omega(var(f))$

Is this inequality tight? Yes.

anti-dictator function: $f(x) = 1 - x_1$

$$\epsilon(f) = 1/2 \text{ and } I_f^- = 1/2$$

• Why? Decreasing edges are **spread** amongst the vertices

Question:

Is there a more nuanced way to understand boundary?

Can test with $\widetilde{O}(d^{1/2})$ queries by combining edge tester and path tester

The Hypergrid

The (fully augmented) hypergrid:

DAG with...

- Vertex set: $[n]^d$
- Edges: (*x*, *y*) which differ on 1 coordinate **by any value**

Thresholded Influence:

$$\mathbb{E}_{x}[\Phi_{f}(x)^{1/2}] = \Omega\left(\frac{\varepsilon(f)}{\log n}\right)$$

• When
$$n = 2$$
, $\Phi_f(x) = I_f^-(x)$

Generalizes the directed Talagrand inequality by KMS

How does this inequality help us analyze monotonicity testers?

Good Subgraphs (let's assume $\varepsilon(f) = \Omega(1)$)

Theorem (BCS STOC 23): For any
$$f: [n]^d \to \mathbb{E}_x[\Phi_f(x)^{1/2}] = \Omega\left(\frac{\varepsilon(f)}{\log n}\right)$$

Good subgraph lemma (KMS 15, informal):

For some Δ , there is bipartite subgraph of decreasing edges G(U, V, E) with max degree Δ and $|E| \ge \widetilde{\Omega}(\sqrt{\Delta} \cdot n^d)$

$$\Delta = d \qquad \Longrightarrow \qquad |E|$$

$$\Delta = 1 \qquad \Longrightarrow \qquad |E|$$

 $|E| \ge \Omega(\sqrt{d} \cdot n^d)$

$\geq \Omega(n^d)$ and *E* is a **matching**

Plan for the Rest of the Talk

Matching assumption: $f: [n]^d \rightarrow \{0,1\}$

There is a matching *E* of $\Omega(n^d)$ decreasing edges

- 1) An $O(n\sqrt{d})$ tester under matching assumption
 - These techniques are due to KMS 15

2) Sketch for $O(\log n\sqrt{d})$ tester under matching assumption

- We may assume n = poly(d) and so $O(\log n\sqrt{d}) = O(\sqrt{d})$ (BCS SODA 20, Harms-Yoshida ICALP 22)

An $O(n\sqrt{d})$ Query Tester

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

Def: $y \in [n]^d$ is **persistent** if a random walk from y of length $\tau - 1$ leads to z with f(z) = f(y) with probability ≥ 0.9

 $\mathbb{P}[f]$

Lemma (KMS, informal): If # decreasing edges $< n\sqrt{d} \cdot n^d$, then # nonpersistent points is $o(n^d)$

All endpoints of *E* are **persistent**

$$\mathbb{P}[f(x) = 1 \land f(y) = 0]$$

$$\geq \sum_{(u,u+se_i)\in E} \mathbb{P}[x = u] \cdot \mathbb{P}[T \ni i] \qquad \mathbb{P}[y_i - x_i = s] \cdot \mathbb{P}[f(y) = 0.9]$$

$$\geq \Omega(n^{-1}d^{-1/2})$$
End of the story for constant *n*... What about

larger *n*?

11

Internal Points

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

• Let I(u, v) = interval of points between u and v

... let's assume I(u, v) is at least half 0's for all $(u, v) \in E$

Walk distribution 2:

- Sample *x* u.a.r. and $T \subseteq [d]$ of $\tau \approx \sqrt{d}$ random coordinates
 - For $i \in T$, choose $p \in [\log n]$ u.a.r
 - set $y_i \in [x_i, x_i + 2^p]$ u.a.r

Walk 2 analysis: condition on passing through u.a.r $z \in I(u, v)$

$$\approx \log^{-1} n$$

Red Edges and the Shifted Path Test

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

Def: Call *z* mostly-zero-below (mzb) if a $(\tau - 1)$ -length downward random walk from z ends at a 0 with prob. ≥ 0.9

Def: Call an edge (u, v) red if a $(\tau - 1)$ -length upward random walk from a u.a.r. $w \in I(u, v)$ ends at z which is **mzb** with prob. ≥ 0.01

Recall: All endpoints of E are **persistent**

E is mostly red \implies Upward walk + downward shift finds a violation with prob. $\Omega(d^{-1/2}\log^{-1}n)$

What if E is mostly not red?

Non-red Edges

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

Def: Call an edge (u, v) red if a $(\tau - 1)$ -length upward random walk from a u.a.r. $w \in I(u, v)$ ends at z which is **mzb** with prob. ≥ 0.01

(u, v) non-red $\implies z$ mostly-one-below with prob. ≥ 0.99

Recall: *u*, *v* are **persistent**

Consider (u', v') a random translation of (u, v)

With high prob. f(u') = 1, f(v') = 0 and most of I(u', v') is **mostly-one-below**

Def: Call an edge (u', v') blue if a constant fraction of I(u', v') is mostly-one-below

A downward random walk from v' discovers a violation with probability $\Omega(d^{-1/2}\log^{-1}n)$

Red-blue Win-win Argument

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

Def: Call an edge (u, v) red if a $(\tau - 1)$ -length upward random walk from a u.a.r. $w \in I(u, v)$ ends at z which is **mzb** with prob. ≥ 0.01

Def: Call an edge (u', v') blue if a constant fraction of I(u', v') is mob

Case 1: *E* is mostly **red**

⇒ Upward walk + downward shift finds a violation with prob. $\Omega(d^{-1/2}\log^{-1}n)$

Red-blue Win-win Argument

Assumption: There is a matching *E* of $\Omega(n^d)$ decreasing edges

Def: Call an edge (u, v) red if a $(\tau - 1)$ -length upward random walk from a u.a.r. $w \in I(u, v)$ ends at z which is mzb with prob. ≥ 0.01

Def: Call an edge (u', v') **blue** if a constant fraction of I(u', v') is **mob**

Case 1: *E* is mostly **red**

 \implies Upward walk + downward shift finds a violation with prob. $\Omega(d^{-1/2}\log^{-1}n)$

Case 2: *E* is mostly **non-red**

 \implies Flow argument: there exists another matching E' which is mostly **blue**

 \implies **Downward walk** finds a violation with prob. $\Omega(d^{-1/2}\log^{-1}n)$

Chen-Waingarten-Xie 17 $\overline{\Omega}(d^{1/3})$

Khot-Minzer-Safra 15 $\widetilde{O}(d^{1/2})$

