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Clustering via Crowdsourcing
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• Can we offload the work of computing a clustering 
by asking simple questions to external individuals?

• Pairwise same-cluster queries: Are these two 
points of the same type?

Are these 
animals in the 
same genus?

Yes!No.



Learning Partitions with Queries

“Yes!”“No.”

Practical clustering model:

Query profile

Learned clustering
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• Leveraging crowd responses to simple questions enables

Theoretical motivation:

Perspective & motivation

• Partition learning is a fundamental problem

• Set  of  elementsU n

• Learn  exactly using same-set queriesX1, …, Xk

• Hidden -partition k X1 ⊔ ⋯ ⊔ Xk = U

Problem statement

(b) Simple combinatorial setting where geometry has been removed 
(“offloaded” to the oracle)

(a) Label-invariance 

• Key aspects remained unexplored



“Yes!”“No.”

Query profile

Learned clustering
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 (1) Query complexity

 (2) Round complexity 

• Responses may be slow
• Important to parallelize queries as much as possible 

 (3) “Size” complexity

Considerations in this work

• Oracle may not be able to handle large subsets 
• Consider generalized subset queries

• Set  of  elementsU n

• Learn  exactly using same-set queriesX1, …, Xk

• Hidden -partition k X1 ⊔ ⋯ ⊔ Xk = U

Problem statement

Learning Partitions with Queries



Learning Partitions with Pair Queries

5

Reyzin-Srivastava [ALT 07],  Mazumdar-Saha [NeuIPS 17], Mazumdar-Saha [AAAI 17], Mazumdar-Pal [NeurIPS 17], Mitzenmacher-Tsouraskis [16], Saha-
Subramanian [ESA 19], Pia-Ma-Tzamos [COLT 22], Bressan-Cesa-Bianchi-Lattanzi-Paudice [NeurIPS 20], Huleihal-Mazumdar-Médard-Pal [NeurIPS 19], etc…
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Classic algorithm of Reyzin-Srivastava: 
Learn clusters one-by-one

 
rounds of 
adaptivity 

k − 1
!!

Θ(nk)
Upper bound 

Reyzin-Srivastava 07

Tight query complexity bound

Lower bound  
Davidson-Khanna-Milo-Roy 14

Question 
What is the minimum number of rounds 
that suffice to achieve  queries?O(nk)

Question 
Given a budget of  rounds, what is the 

optimal query complexity?
rCan we do 

better?

• Set  of  elementsU n

• Learn  exactly using same-set queriesX1, …, Xk

• Hidden -partition k X1 ⊔ ⋯ ⊔ Xk = U



Result 1: Round Complexity of Pair Queries
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Fully adaptive

Θ(nk)
Non-adaptive

Θ(n2) 1 round of 
adaptivity 

 rounds?r

Θ (n1+ 1
2r − 1 ⋅ k1− 1

2r − 1 )
*Theorem

 
rounds of 
adaptivity 

k − 1 !!
O(log log n)

A double exponential 
improvement when  k ≥ n0.01

Fine print:

* Algorithm and lower bound are deterministic

* lower bound matches exactly for 


* … but only ever off by a  factor
r = O(1)

r = O(log log n)

• Set  of  elementsU n

• Learn  exactly using same-set queriesX1, …, Xk

• Hidden -partition k X1 ⊔ ⋯ ⊔ Xk = U



Algorithm: r = 2
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• Split into  sets of size (n/k)2/3 n1/3k2/3

• Round 1: Run non-adaptive algorithm in each

• Round 2: Run non-adaptive algorithm on ∪i Ri

• one representative from each cluster found in Ri = Ui

Round 1 queries

(n/k)2/3 ⋅ (n1/3k2/3)2 = n4/3k2/3

Round 2 queries

(k ⋅ (n/k)2/3)2 = n4/3k2/3

Combine partitions computed in round 1 using 
information in gained in round 2

⟶

U1
U2 U(n/k)2/3

U

⋯

R = ∪i Ri

|R | = k ⋅ (n/k)2/3 = n2/3k1/3



Algorithm: general r
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• Split into  sets of size (n/k)1−ε(r) nε(r)k1−ε(r)

• Round 1: Run non-adaptive algorithm in each

• Round : Run  round algorithm on 2,…, r r − 1 ∪i Ri

• one representative from each cluster found in Ri = Ui

Round 1 queries

(n/k)1−ε(r) ⋅ (nε(r)k1−ε(r))2 = n1+ε(r)k1−ε(r)

Round  queries2,…, r
|R |1+ε(r−1) k1−ε(r−1) = (k ⋅ (n/k)1−ε(r))1+ε(r−1)k1−ε(r−1)

ε(r) =
1

2r − 1

= n1+ε(r)k1−ε(r) Ugly expression… but 
the math works out

Note: setting constants appropriately allows to avoid 
an additional  factor in final query complexityr

U1
U2 U(n/k)1−ε(r)

U

R = ∪i Ri

|R | = k ⋅ (n/k)1−ε(r) = n1−ε(r)kε(r)

⋯



Lower bound high level ideas
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• View queries as edges in a graph over U

Ω ( 1
r

⋅ n1+ 1
2r − 1 ⋅ k1− 1

2r − 1 )
∀k ≥ r + 2

• Queries appearing in  rounds r Q = Q1 ∪ Q2 ∪ ⋯ ∪ Qr ⊆ (U
2 )

• Consider arbitrary deterministic algorithm

Fixed set Depend on previous 
query responses

Idea: If  is 

(a) an independent set (IS), and 

(b) every query that touches  has returned 

“not same set”, 

then we have not learned anything about 
partition in 

Z ⊂ U

Z

Z

G2(U, Q1 ∪ Q2)

(The query graph after 2 rounds)

Z
Turán’s theorem: 

 queries so far  

 contains an IS of size 

q ≥ n ⟹
G ≈ n2/q

!!



Warm-up: 
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Ω (n1+ 1
2r − 1 ),  k ≥ r + 2

If , there exists |Q | ≪ n2 (x, y) ∈ (U
2 )∖Q ⟹

x
y vs.

x
y

Cannot distinguish

Base case: , : r = 1 k = 3

Induction: , :r > 1 k = r + 2

If , there exists an IS  in  of 
size  by Turán’s theorem

|Q1 | ≪ n1+ 1
2r − 1 Z1 G1

≈ n1− 1
2r − 1

• By induction, if , then there exists two 
partitions  over  into  sets that are not distinguished

|Q2 ∪ ⋯ ∪ Qr | ≪ |Z1 |1+ 1
2r−1 − 1 = n1+ 1

2r − 1

P1, P2 Z1 r + 1

Z1

U∖Z1

• Fix  as one clusterU∖Z1

• Remaining  rounds restricted in :r − 1 Z

Bringing in dependence on  is significantly more challenging, but core ideas are similark

Z1

U∖Z1

Z2
Z1

U∖Z1

Z2

Z3
⋯
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Generalizing to Subset Queries
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• Set  of  elementsU n

• How many subset queries of size at most  to learn  exactly?s X1, …, Xk
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• Hidden -partition k X1 ⊔ ⋯ ⊔ Xk = U

Chakrabarty-Liao [FSTTCS 24], Black-Lee-Mazumdar-Saha [NeurIPS 24]

Strong Weak
Returns full description of partition on S Returns # clusters intersecting S

s = n 1 query is 
sufficient

 adaptive [CL24]O(n)  info-theoryΩ(n)
 non-adaptive [BLMS24]Õ (n)

Question: What is the minimum query size  needed to achieve  queries?s Õ (n)

Basic observation:  pair queries simulate 1 strong subset querys2

⟹  adaptiveΩ(nk/s2)

 non-adaptiveΩ(n2/s2)
 adaptiveΩ(nk/s2 + n)

 non-adaptiveΩ(n2/s2 + n)
 info theory+

Not 
practical



Result 2: Size Complexity of Subset Queries
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Strong Weak
Returns full description of partition on S Returns # clusters intersecting S 2

2
Ω(n2/s2) Ω(n2/s2 + n) info theory+

(Non-adaptive)

Question 
When , are weak queries just as 

useful as strong queries?
s ≤ n

Question 
Is the information-theoretic optimum 

attainable with only -sized queries?n

Yes!* Despite, exponentially less information from weak queries

Theorem (non-adaptive)

 weak queries for all Õ (n2/s2) s ≤ n

Theorem (non-adaptive)

 strong queries for all O(n2/s2) s ≤ n

* Up to -factorslog



General theorems for -rounds, -sizer s
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Theorem (strong queries) 

Θ max ( n1+ 1
2r − 1 k1− 1

2r − 1

s2
,

n
s )

Theorem (weak queries) 

Θ̃ max ( n1+ 1
2r − 1 k1− 1

2r − 1

s2
, n)

Equal for  up until info-theory bound is reached for weak queries:s

s ≤ n
1

2r − 1 ⋅ k1− 1
2r − 1

Info-theory bounds



Summary
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• We revisit the classic problem of partition learning with pair-wise queries / crowdsource clustering

• Obtain tight bounds in terms of round-complexity

• Practical consideration: query parallelization

• Consider generalized subset queries

• Obtain tight bounds in terms of allowed query size

• Practical consideration: large queries infeasible

Unexplored direction 
What is the right noise model for subset queries?

• Up to reasonable size threshold:

• Oracle that counts # intersected clusters “as useful” as oracle that returns entire clustering


