
Optimal Graph Reconstruction by Counting
Connected Components in Induced Subgraphs

Hadley Black Arya Mazumdar Barna Saha Yinzhan Xu

UC San Diego

Conference on Learning Theory (COLT) 2025

Graph Reconstruction (GR)

2

• Given query access to simple -vertex -edge graph , recover exactly.n m G(V, E) E

Provided Unknown

Independent-Set (IS) queries:
Does contain an edge?G[S]

[GK98 ABKRS04, AA05, AC08, AB19]

Early works
studied

Motivations:

• Basic combinatorial search question related to coin-weighing,
group testing, etc.

• Genome mapping: can be used to model procedures for physical
mapping of DNA molecules [GK98, AA05]

Question
How many views to

reconstruct a graph?

GR History

3

Independent-Set (IS) queries
Does contain an edge?G[S]

[GK98 ABKRS04, AA05, AC08, AB19]
Θ(m log n)

How many edges in ?G[S]
Grebinski98, GK00, RS07, CK10,

Mazzawi10, CJK11, Choi13]

Θ (m log(n2/m)
log m)

Additive (ADD) queries

• Given query access to simple -vertex -edge graph , recover exactly.n m G(V, E) E

Provided Unknown

Oracle returns a
maximal IS in G[S]

[KOT25]

Maximal IS queries

More recent

What is distance from
 to in ?x y G

[KKU95, BEE+06,
EHHM06, MZ13, KMZ18,
MZ21, RLYW21, BG23]

Distance Queries

Classic open question

Connected
Component (CC)

Queries
How many CCs in

?G[S]

This work

Many ways to
strengthen IS queries

CC Queries: How many CCs in ?G[S]

Connected Component Queries

4

• Given query access to simple -vertex -edge graph , recover exactly.n m G(V, E) E

We introduce

• CC counts are easy to compute in certain models (e.g.,
Congested-Clique [GP 16])

Motivations:

• CC count is a natural basic graph parameter

• Another natural way to strengthen IS queries

• Generalizes partition learning with subset queries
[CL 24, BLMS 24, BMS 25]

Basic Bounds

5

• Trivial algorithm: query every pair O(n2) (u, v) ∈ (V
2)

• lower bound: Ω(n2) Kn∖{(u, v)}
u

v• Any query on more than 2 vertices always
returns (no information)1

• Querying pairs: finding missing edge is an
unstructured search problem of size Ω(n2)

1

⟹ Need to
parametrize by m

• lower bound: Ω (m log n
log m)

 graphs (for)(n(n − 1)/2
m) = 2Ω(m log n) m ≪ n

CC’s in between and bits per queryG[S] |S | − m |S | ⟹ O(log m)

Results

6

Adaptive algorithm

Θ (m log n
log m)

Non-adaptive lower bound

 even when Ω(n2) m = O(n)

CC Queries: How many CCs in ?G[S] Comparison with additive queries

Θ (m log(n2/m)
log m) Slightly better for

very dense graphs

There is a non-adaptive
algorithm that attains this bound

[CK10, BM11, BM15]

1) queries to approximate degreesO(n log2 n)

2) queries to recover the neighbor of O(d(u) ⋅ log n) u

• Using CC queries to simulate a group testing primitive

Two-round algorithm

O(m log n + n log2 n)

Non-Adaptive Lower Bound

7

Non-adaptive lower bound

 even when Ω(n2) m = O(n)

• For each , define:(u, v) ∈ (V
2)
K2,n−2

u v

⋯
vs.

K2,n−2 ∪ {(u, v)}

u v

⋯

• To distinguish, must query some containing both S u, v
… but any query larger than containing returns “1 CC” in both cases2 u, v

 need queries to distinguish every such pair of graphs⟹ Ω(n2)

… so only queries of size are useful for a non-adaptive algorithm2

Why Adaptivity Helps

8

u v

⋯
vs.

u v

⋯

First, learn structural information about the graph to inform later queries

Observation:
 # CC’s in < # CC’s in

iff
G[S] G[S ∪ {u}]

N(u) ∩ S = ∅

Using this we can easily
distinguish high vs. low

degree vertices

Then query the edge
between the two high-

degree vertices

Technique 1: vertices with similar degree

9

• Assume all vertices have degree where O(D) D = m/n

Observation:
If is a forest, then

edges in # CC’s in
H

H[S] = |S |− H[S]

Additive queries and CC queries
are equivalent on forests

 random subgraph with sample rate is a forest with probability ⟹ H p = O((mD)−1/3) Ω(1)

Note: target query
complexity is O(m)

G

 vertices≈ pn

 edges≈ p2m

H
 simulate ADD-query algorithm in : ⟹ H ≈

p2m log(pn)
log(p2m)

≈ p2m

We recover edges using queries in expectation≈ p2m ≈ p2m

Technique 2: vertices with dissimilar degree

10

G[U]

⋮
v

≫ d ⋅ n0.01

• Suppose we have recovered subgraph
with max degree

G[U]
d

• Let be a vertex with degree

v D ≫ d ⋅ n0.01

 Can partition into
 independent sets

⟹ U = W1 ⊔ ⋯ ⊔ Wd+1
d + 1

Goal

recover
with queries

G[U ∪ {v}]
O(D)

W1

W2

Wd+1

 is a forest: can simulate ADD-query algorithm on each⟹ G[Wi ∪ {v}]

O (log n ⋅
d+1

∑
i=1

deg(v, Wi)
log deg(v, Wi)) ≤ O ((d + 1)log n ⋅

D/(d + 1)
log(D/(d + 1))) ≤ O (log n ⋅

D
log(n0.01)) ≤ O(D)

Total query complexity

Jensen’s

Adaptive Algorithm

11

• Carefully choose thresholds which partition vertices by degree

V = V1, …, Vℓ

• Use technique 1 to learn and (similar degree)

G[Vi] G[Vi, Vi+1]

• Use technique 2 to learn for (dissimilar degree)

G[Vi, Vj] j > i + 1

G
Note

This is not the whole story, as we are
not provided the degree of vertices

Poses significant other challenges

Conclusion

12

• We propose a new query model for the classic graph reconstruction problem

• Obtain tight bounds for adaptive algorithms

• Show separation from well-studied additive model in terms of adaptivity

Are CC queries interesting for other graph problems?

How many CC queries to count edges? Is this easier
than reconstruction?

What is the round complexity of GR with CC queries?

Questions

