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Graph Reconstruction (GR)
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• Given query access to simple -vertex -edge graph , recover  exactly.n m G(V, E) E

Provided Unknown 

Independent-Set (IS) queries:
Does  contain an edge?G[S]

[GK98 ABKRS04, AA05, AC08, AB19]

Early works 
studied

Motivations:

• Basic combinatorial search question related to coin-weighing, 
group testing, etc.

• Genome mapping: can be used to model procedures for physical 
mapping of DNA molecules [GK98, AA05]

Question 
How many views to 

reconstruct a graph?



GR History
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Independent-Set (IS) queries
Does  contain an edge?G[S]

[GK98 ABKRS04, AA05, AC08, AB19]
Θ(m log n)

How many edges in ?G[S]
Grebinski98, GK00, RS07, CK10, 

Mazzawi10, CJK11, Choi13]

Θ ( m log(n2/m)
log m )

Additive (ADD) queries

• Given query access to simple -vertex -edge graph , recover  exactly.n m G(V, E) E

Provided Unknown 

Oracle returns a 
maximal IS in G[S]

[KOT25]

Maximal IS queries

More recent

What is distance from 
 to  in ?x y G

[KKU95, BEE+06, 
EHHM06, MZ13, KMZ18, 
MZ21, RLYW21, BG23]

Distance Queries

Classic open question

Connected 
Component (CC) 

Queries
How many CCs in 

?G[S]

This work

Many ways to 
strengthen IS queries



CC Queries: How many CCs in ?G[S]

Connected Component Queries
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• Given query access to simple -vertex -edge graph , recover  exactly.n m G(V, E) E

We introduce

• CC counts are easy to compute in certain models (e.g., 
Congested-Clique [GP 16])

Motivations:

• CC count is a natural basic graph parameter

• Another natural way to strengthen IS queries

• Generalizes partition learning with subset queries 
[CL 24, BLMS 24, BMS 25]



Basic Bounds

5

• Trivial  algorithm: query every pair O(n2) (u, v) ∈ (V
2)

•  lower bound: Ω(n2) Kn∖{(u, v)}
u

v• Any query on more than 2 vertices always 
returns  (no information)1

• Querying pairs: finding missing edge is an 
unstructured search problem of size Ω(n2)

1

⟹ Need to 
parametrize by m

•  lower bound: Ω ( m log n
log m )

 graphs (for )(n(n − 1)/2
m ) = 2Ω(m log n) m ≪ n

# CC’s in  between  and              bits per queryG[S] |S | − m |S | ⟹ O(log m)



Results
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Adaptive algorithm

Θ ( m log n
log m )

Non-adaptive lower bound

 even when Ω(n2) m = O(n)

CC Queries: How many CCs in ?G[S] Comparison with additive queries

Θ ( m log(n2/m)
log m ) Slightly better for 

very dense graphs

There is a non-adaptive 
algorithm that attains this bound

[CK10, BM11, BM15]

1)  queries to approximate degreesO(n log2 n)

2)  queries to recover the neighbor of O(d(u) ⋅ log n) u

• Using CC queries to simulate a group testing primitive

Two-round algorithm

O(m log n + n log2 n)



Non-Adaptive Lower Bound
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Non-adaptive lower bound

 even when Ω(n2) m = O(n)

• For each , define:(u, v) ∈ (V
2)
K2,n−2

u v

⋯
vs.

K2,n−2 ∪ {(u, v)}

u v

⋯

• To distinguish, must query some  containing both S u, v
… but any query larger than  containing  returns “1 CC” in both cases2 u, v

 need  queries to distinguish every such pair of graphs⟹ Ω(n2)

… so only queries of size  are useful for a non-adaptive algorithm2



Why Adaptivity Helps
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u v

⋯
vs.

u v

⋯

First, learn structural information about the graph to inform later queries

Observation: 
 # CC’s in  < # CC’s in  

iff 
G[S] G[S ∪ {u}]

N(u) ∩ S = ∅

Using this we can easily 
distinguish high vs. low 

degree vertices

Then query the edge 
between the two high-

degree vertices



Technique 1: vertices with similar degree
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• Assume all vertices have degree  where O(D) D = m/n

Observation: 
If  is a forest, then


# edges in  # CC’s in  
H

H[S] = |S |− H[S]

Additive queries and CC queries 
are equivalent on forests

  random subgraph  with sample rate  is a forest with probability ⟹ H p = O((mD)−1/3) Ω(1)

Note: target query 
complexity is O(m)

G

 vertices≈ pn

 edges≈ p2m

H
  simulate ADD-query algorithm in :  ⟹ H ≈

p2m log(pn)
log(p2m)

≈ p2m

We recover  edges using  queries in expectation≈ p2m ≈ p2m



Technique 2: vertices with dissimilar degree
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G[U]

⋮
v

≫ d ⋅ n0.01

• Suppose we have recovered subgraph  
with max degree 


     

G[U]
d

• Let  be a vertex with degree 

     

v D ≫ d ⋅ n0.01

  Can partition  into 
 independent sets

⟹ U = W1 ⊔ ⋯ ⊔ Wd+1
d + 1

Goal 

recover  
with  queries

G[U ∪ {v}]
O(D)

W1

W2

Wd+1

   is a forest: can simulate ADD-query algorithm on each⟹ G[Wi ∪ {v}]

O (log n ⋅
d+1

∑
i=1

deg(v, Wi)
log deg(v, Wi) ) ≤ O ((d + 1)log n ⋅

D/(d + 1)
log(D/(d + 1)) ) ≤ O (log n ⋅

D
log(n0.01) ) ≤ O(D)

Total query complexity

Jensen’s



Adaptive Algorithm
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• Carefully choose thresholds which partition vertices by degree 

     

V = V1, …, Vℓ

• Use technique 1 to learn  and  (similar degree) 
     

G[Vi] G[Vi, Vi+1]

• Use technique 2 to learn  for  (dissimilar degree)

     

G[Vi, Vj] j > i + 1

G
Note 


This is not the whole story, as we are 
not provided the degree of vertices

Poses significant other challenges



Conclusion
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• We propose a new query model for the classic graph reconstruction problem

     

• Obtain tight bounds for adaptive algorithms


• Show separation from well-studied additive model in terms of adaptivity 


Are CC queries interesting for other graph problems?

How many CC queries to count edges? Is this easier 
than reconstruction?

What is the round complexity of GR with CC queries?

Questions


